Площадь сегмента круга

Свойства радиуса

В отношении радиуса действуют несколько важных правил:

  1. Радиус составляет половину диаметра. Это мы продемонстрировали только что.
  2. У окружности может быть сколько угодно радиусов. Но все они будут равны по длине между собой.

  3. Если в точке пересечения радиуса с поверхностью окружности провести касательную, то эти две линии будут пересекаться под прямым углом. Доказательство этой теоремы наглядно приводится на следующем рисунке.

  4. Напомним, хордой называется любой отрезок, который проходит через две точки на поверхности окружности, но не через центр. Этим она принципиально отличается от диаметра.

Определение основных величин

  1. 1

    Запомните основные величины, которые имеют отношение к вычислению радиуса шара. Радиус шара – это отрезок, который соединяет центр шара с любой точкой на его поверхности. Радиус шара можно вычислить по данным значениям диаметра, длины окружности, объема или площади поверхности.

    • Диаметр (D) – это отрезок, который соединяет две точки на поверхности шара и проходит через его центр (то есть это наибольшее расстояние между противоположными точками, лежащими на поверхности шара). Диаметр равен удвоенному радиусу.
    • Длина окружности (С) представляет собой длину окружности большого круга, то есть круга, который образует секущая плоскость, проходящая через центр шара.
    • Объем (V) – это значение трехмерного пространства, занимаемого шаром.
    • Площадь поверхности (А) – это значение двумерного (плоского) пространства, ограниченного поверхностью шара.
    • Пи (π) – это постоянная, которая равна отношению длины окружности к ее диаметру. Первыми десятью цифрами этой постоянной являются 3,141592653, но зачастую число Пи округляется до 3,14.
  2. 2

    Воспользуйтесь значениями данных величин, чтобы найти радиус. Радиус можно вычислить по данным значениям диаметра, длины окружности, объема и площади поверхности. Более того, указанные величины можно найти по данному значению радиуса. Чтобы вычислить радиус, просто преобразуйте формулы для нахождения указанных величин. Ниже приведены формулы (в которых присутствует радиус) для вычисления диаметра, длины окружности, объема и площади поверхности.

    • D = 2г. Как и в случае круга, диаметр шара в два раза больше его радиуса.
    • C = πD = 2πr. Как и в случае круга, длина окружности шара равна произведению π на диаметр шара. Так как диаметр вдвое больше радиуса, то длина окружности шара равна удвоенному произведению π на радиус шара.
    • V = (4/3)πr3. Объем шара равен произведению 4/3 на π и на радиус в кубе.
    • А = 4πr2. Площадь поверхности шара равна учетверенному произведению π на радиус в квадрате. Так как площадь круга равна πr2, то площадь поверхности шара в четыре раза больше площади круга, который образует секущая плоскость, проходящая через центр шара.

Основные формулы для вычислений

Параметры используются в формулах вычислений величин окружности:

  • длину фигуры вычисляют умножением диаметра на число π и записывают таким образом: C = π*D.
  • Величина диаметра в два раза превышает длину радиуса. Иной способ вычисления радиуса — необходимо разделить длину круга на удвоенное π: R = C/(2* π) = D/2.
  • Диаметр рассчитывается с помощью радиуса или делением длины окружности на число π. Формула нахождения диаметра: D = C/π = 2*R.
  • Площадь круга, ограниченного окружностью, можно найти двумя способами: через радиус или диаметр. По формуле площадь равна четвёртой части произведения числа π и диаметра в квадрате или радиусу в квадрате, умноженному на π: S = π*R2 = π*D2/4.

Диаметр в формулах вычисления

В экономике и математике нередко появляется необходимость поиска длины окружности. Но и в повседневной жизни можно столкнуться с этой надобностью, к примеру, во время постройки забора вокруг бассейна круглой формы. Как рассчитать длину окружности по диаметру? В этом случае используют формулу C = π*D, где С — это искомая величина, D — диаметр.

Например, ширина бассейна равна 30 метрам, а столбики забора планируют поставить на расстоянии десяти метров от него. В этом случае формула расчёта диаметра: 30+10*2 = 50 метров. Искомая величина (в этом примере — длина забора): 3,14*50 = 157 метров. Если столбики забора будут стоять на расстоянии трёх метров друг от друга, то всего их понадобится 52.

Расчёты по радиусу

Как вычислить длину окружности по известному радиусу? Для этого используется формула C = 2*π*r, где С — длина, r — радиус. Радиус в круге меньше диаметра в два раза, и это правило может пригодиться в повседневной жизни. К примеру, в случае приготовления пирога в раздвижной форме.

Для того чтобы кулинарное изделие не испачкалось, необходимо использовать декоративную обёртку. А как вырезать бумажный круг подходящего размера?

Те, кто немного знаком с математикой, понимают, что в этом случае нужно умножить число π на удвоенный радиус используемой формы. Например, диаметр формы равен 20 сантиметрам, соответственно, её радиус составляет 10 сантиметров. По этим параметрам находится необходимый размер круга: 2*10*3, 14 = 62,8 сантиметра.

Подручные способы вычисления

Если найти длину окружности по формуле нет возможности, то стоит воспользоваться подручными методами расчёта этой величины:

  • При небольших размерах круглого предмета его длину можно найти с помощью верёвки, обёрнутой вокруг один раз.
  • Величину большого предмета измеряют так: на ровной плоскости раскладывают верёвку, и по ней прокатывают круг один раз.
  • Современные студенты и школьники для расчётов используют калькуляторы. В режиме онлайн по известным параметрам можно узнавать неизвестные величины.

Способы расчета

Чтобы получить круглое поперечное сечение, необходимо разрезать объёмную фигуру перпендикулярно оси вращения. В случае с цилиндром площади всех поперечных сечений будут равны между собой — как, например, кружки колбасы, нарезанные поперек батона, одинаковы.

Шар, по сути, представляет собой напластование блинчиков-кругов различного диаметра от точечного до заданного и обратно до точки. Чтобы найти S какого-либо из блинчиков, необходимо определить его радиус. Принцип его расчёта сводится к решению теоремы Пифагора, где гипотенузой выступает радиус шара, а искомый радиус становится одним из катетов.

При расчёте площади сечений конуса необходимо найти радиус или диаметр каждого из кругов, учитывая, что в продольном разрезе конус — это равнобедренный треугольник.

Цилиндр, конус и шар — базовые объемные фигуры. Однако существуют более сложные фигуры, например, тор. Тор, или тороид, при первом приближении являет собой не что иное, как бублик или баранку. Разломив его пополам, на торцах можно увидеть два одинаковых круга. Площадь такого поперечного сечения можно получить, удвоив имеющуюся (на рисунке серая область справа). Если взять нож и рассечь баранку вдоль, на срезе получится кольцо. В случае с такой фигурой необходимо найти площадь круга по внешней окружности и вычесть из нее «дырку от бублика» (показано серым на рисунке слева).

Площадь круглого поперечного сечения рассчитывается исходя из имеющихся характеристик. Она сводится к трем основным формулам. Их можно представить таким образом:

  1. Самая популярная, легкая в применении и часто используемая формула. Чтобы узнать площадь фигуры, если известен её радиус, нужно возвести это значение в квадрат и умножить на число π. Для бытовых расчетов достаточно двух знаков после запятой, то есть π = 3,14.
  2. Иногда оперируют диаметром, а не радиусом круга. В этом случае к вычислениям добавляется одна операция: диаметр умножают сам на себя, затем на число π, а произведение делят на 4.
  3. Если известна длина окружности С и ее радиус R и нужно выяснить площадь круга, ограниченного этой окружностью, не понадобится даже π. Используют следующую формулу: значение С делят пополам и умножают на R. Полученное чисто и будет искомой величиной.

Нахождение радиуса по расстоянию между двумя точками

  1. 1

    Найдите координаты (х,у,z) центра шара.

    Рассмотрим пример. Дан шар с центром с координатами (4,-1,12). Воспользуйтесь этими координатами, чтобы найти радиус шара.

    Радиус шара равен расстоянию между его центром и любой точкой, лежащей на поверхности шара. Если известны координаты центра шара и любой точки, лежащей на его поверхности, можно найти радиус шара по специальной формуле, вычислив расстояние между двумя точками. Сначала найдите координаты центра шара. Имейте в виду, что так как шар является трехмерной фигурой, то точка будет иметь три координаты (х,у,z), а не две (х,у).

  2. 2

    Найдите координаты точки, лежащей на поверхности шара. Теперь нужно найти координаты (х,у,z) любой

    В нашем примере допустим, что некоторая точка, лежащая на поверхности шара, имеет координаты (3,3,0). Вычислив расстояние между этой точкой и центром шара, вы найдете радиус.

    точки, лежащей на поверхности шара. Так как все точки, лежащие на поверхности шара, расположены на одинаковом расстоянии от центра шара, для вычисления радиуса шара можно выбрать любую точку.

  3. 3

    Вычислите радиус по формуле d = √((x2 – x1)2 + (y2 – y1)2 + (z2 – z1)2). Узнав координаты центра шара и точки, лежащей на его поверхности, вы можете найти расстояние между ними, которое равно радиусу шара. Расстояние между двумя точками вычисляется по формуле d = √((x2 – x1)2 + (y2 – y1)2 + (z2 – z1)2), где d – расстояние между точками, (x1,y1,z1) – координаты центра шара, (x2,y2,z2) – координаты точки, лежащей на поверхности шара.

    • В рассматриваемом примере вместо (x1,y1,z1) подставьте (4,-1,12), а вместо (x2,y2,z2) подставьте (3,3,0):
      • d = √((x2 – x1)2 + (y2 – y1)2 + (z2 – z1)2)
      • d = √((3 – 4)2 + (3 – -1)2 + (0 – 12)2)
      • d = √((-1)2 + (4)2 + (-12)2)
      • d = √(1 + 16 + 144)
      • d = √(161)
      • d = 12,69. Это искомый радиус шара.
  4. 4

    Имейте в виду, что в общих случаях r = √((x2 – x1)2 + (y2 – y1)2 + (z2 – z1)2). Все точки, лежащие на поверхности шара, расположены на одинаковом расстоянии от центра шара. Если в формуле для нахождения расстояния между двумя точками “d” заменить на “r”, получится формула для вычисления радиуса шара по известным координатам (x1,y1,z1) центра шара и координатам (x2,y2,z2

    Возведите обе стороны этого уравнения в квадрат, и получите r2 = (x2 – x1)2 + (y2 – y1)2 + (z2 – z1)2. Отметьте, что это уравнение соответствует уравнению сферы r2 = x2 + y2 + z2 с центром с координатами (0,0,0).

    ) любой точки, лежащей на поверхности шара.

Основные определения и свойства

Фигура Рисунок Определения и свойства
Окружность Множество точек плоскости, находящихся на одном и том же расстоянии от одной точки — центра окружности
Дуга Часть окружности, расположенная между двумя точками окружности
Круг Конечная часть плоскости, ограниченная окружностью
Сектор Часть круга, ограниченная двумя радиусами
Сегмент Часть круга, ограниченная хордой
Правильный многоугольник Выпуклый многоугольник, у которого все стороны равны и все углы равны
Около любого правильного многоугольника можно описать окружность
Окружность
Множество точек плоскости, находящихся на одном и том же расстоянии от одной точки — центра окружности
Дуга
Часть окружности, расположенная между двумя точками окружности
Круг
Конечная часть плоскости, ограниченная окружностью
Сектор
Часть круга, ограниченная двумя радиусами
Сегмент
Часть круга, ограниченная хордой
Правильный многоугольник
Выпуклый многоугольник, у которого все стороны равны и все углы равны

Около любого правильного многоугольника можно описать окружность

Определение 1. Площадью круга называют предел, к которому стремятся площади правильных многоугольников, вписанных в круг, при неограниченном возрастании числа сторон.

Определение 2. Длиной окружности называют предел, к которому стремятся периметры правильных многоугольников, вписанных в круг, при неограниченном возрастании числа сторон.

Замечание 1. Доказательство того, что пределы площадей и периметров правильных многоугольников, вписанных в круг, при неограниченном возрастании числа сторон действительно существуют, выходит за рамки школьной математики и в нашем справочнике не приводится.

Определение 3. Числом π (пи) называют число, равное площади круга радиуса 1.

Замечание 2. Число π является иррациональным числом, т.е. числом, которое выражается бесконечной непериодической десятичной дробью:

Число π является трансцендентным числом, то есть числом, которое не может быть корнем алгебраического уравнения с целочисленными коэффициентами.

Радиус круга онлайн

Если всё же возникли сложности и высчитать радиус круга по формулам не получается, то можно воспользоваться онлайн-калькуляторами и узнать нужное значение с помощью них.

Для вычисления радиуса нужно только ввести известное значение длины окружности или площади круга в пустую ячейку и нажать кнопку «вычислить».

Вот так легко и просто можно решить поставленную задачку.

Как найти радиус окружности? Этот вопрос всегда актуален для школьников, изучающих планиметрию. Ниже мы рассмотрим несколько примеров того, как можно справиться с поставленной задачей.

В зависимости от условия задачи радиус окружности вы можете найти так.

Формула 1: R = Л / 2π, где Л – это длина окружности, а π – константа, равная 3,141…

Формула 2: R = √( S / π), где S – это величина площади круга.

Формула 3: R = Д/2, где Д – это диаметр окружности, то есть длина того отрезка, который, проходя через центр фигуры, соединяет две максимально удаленные друг от друга точки.

Как найти радиус описанной окружности

Сначала давайте определимся с самим термином. Окружность называется описанной тогда, когда она касается всех вершин заданного многоугольника. При этом следует заметить, что описать окружность можно только вокруг такого многоугольника, стороны и углы которого между собой равны, то есть вокруг равностороннего треугольника, квадрата, правильного ромба и т.п. Для решения поставленной задачи необходимо найти периметр многоугольника, а также вымерить его стороны и площадь. Поэтому вооружитесь линейкой, циркулем, калькулятором и тетрадкой с ручкой.

Как найти радиус окружности, если она описана вокруг треугольника

Формула 1: R = (А*Б*В) / 4S, где А, Б, В – длины сторон треугольника, а S – его площадь.

Формула 2: R = А / sin а, где А – длина одной из сторон фигуры, а sin а – высчитанное значение синуса противолежащего этой стороне угла.

Радиус окружности, которая описана вокруг прямоугольного треугольника.

Формула 1: R = В/2, где В – гипотенуза.

Формула 2: R = М*В, где В – гипотенуза, а М – медиана, проведенная к ней.

Как найти радиус окружности, если она описана вокруг правильного многоугольника

Формула: R = А / (2 * sin (360/(2*n))), где А – длина одной из сторон фигуры, а n – количество сторон в данной геометрической фигуре.

Как найти радиус вписанной окружности

Вписанной окружность называется тогда, когда она касается всех сторон многоугольника. Рассмотрим несколько примеров.

Формула 1: R = S / (Р/2), где – S и Р – площадь и периметр фигуры соответственно.

Формула 2: R = (Р/2 — А) * tg (а/2), где Р – периметр, А – длина одной из сторон, а – противолежащий этой стороне угол.

Как найти радиус окружности, если она вписана в прямоугольный треугольник

Радиус окружности, которая вписана в ромб

Формула 1: R = 2 * Н, где Н – это высота геометрической фигуры.

Формула 2: R = S / (А*2), где S – это площадь ромба, а А – длина его стороны.

Формула 3: R = √((S * sin А)/4), где S – это площадь ромба, а sin А – синус острого угла данной геометрической фигуры.

Формула 4: R = В*Г/(√(В² + Г²), где В и Г – это длины диагоналей геометрической фигуры.

Формула 5: R = В*sin (А/2), где В – диагональ ромба, а А – это угол в вершинах, соединяющих диагональ.

Радиус окружности, которая вписана в треугольник

В том случае, если в условии задачи вам даны длины всех сторон фигуры, то сначала высчитайте периметр треугольника (П), а затем полупериметр (п):

П = А+Б+В, где А, Б, В – длин сторон геометрической фигуры.

А если, зная все те же три стороны, вам дана еще и площадь фигуры, то можете рассчитать искомый радиус следующим образом.

Формула 2: R = S * 2(А + Б + В)

Формула 3: R = S/п = S / ( А+Б+В)/2), где – п – это полупериметр геометрической фигуры.

Формула 4: R = (п — А) * tg (А/2), где п – это полупериметр треугольника, А – одна из его сторон, а tg (А/2) – тангенс половины противолежащего этой стороне угла.

А ниже приведенная формула поможет отыскать радиус той окружности, которая вписана в равносторонний треугольник.

Формула 5: R =А * √3/6.

Радиус окружности, которая вписана в прямоугольный треугольник

Если в задаче даны длины катетов, а также гипотенуза, то радиус вписанной окружности узнается так.

Формула 1: R = (А+Б-С)/2, где А, Б – катеты, С – гипотенуза.

В том случае, если вам даны только два катета, самое время вспомнить теорему Пифагора, чтобы гипотенузу найти и воспользоваться вышеприведенной формулой.

Радиус окружности, которая вписана в квадрат

Окружность, которая вписана в квадрат, делит все его 4 стороны ровно пополам в точках касания.

Формула 1: R = А/2, где А – длина стороны квадрата.

Формула 2: R = S / (Р/2), где S и Р – площадь и периметр квадрата соответственно.

Центральный угол и градусная мера дуги

Любые две точки на окружности разбивают ее на две дуги. Чтобы отличать эти дуги, на каждой из них ставят точку, которую и указывают в обозначении дуги:

Здесь красным цветом показана⋃АСВ, а синим – ⋃ADB. Однако иногда для простоты указывают только концы дуги, то есть используют обозначение ⋃AВ. Это делается тогда, когда ясно, о какой дуге окружности идет речь. Обычно всегда подразумевается та дуга, которая меньше.

Можно заметить, что дуги отличаются по размеру, поэтому возникает потребность их измерения. Для этого используют такое понятие, как градусная мера дуги.

Для ее определения необходимо соединить концы дуги с центром окруж-ти. В результате получаются радиусы, которые пересекаются в центре окружности. Угол между ними именуется центральным углом окруж-ти.

Для каждой дуги можно построить единственный центральный угол, поэтому логично измерять дугу с помощью такого угла. Правда, обратное неверно. На рисунке видно, что центральному углу ∠АОВ соответствует сразу две дуги: ⋃АСВ и ⋃АDB:

Поэтому условно считают, градусная мера той из двух дуг, которая меньше, как раз и равна центральному углу:

Дуги, также как отрезки или углы, можно складывать или вычитать. Например, пусть есть две дуги, ⋃AВ и ⋃ВС, чьи градусные меры составляют 40° и 30°.

Как найти ⋃АС? Ей соответствует центральный угол ∠АОС, который в свою очередь равен сумме ∠АОВ и ∠ВОС:

Диаметр делит окруж-ть на две равные друг другу дуги, которые называются полуокружностями. При этом диаметр окружности можно рассматривать как угол между двумя радиусами, равный 180°. Получается, что градусная мера полуокружности составляет 180°:

Вместе две полуокружности образуют полную окруж-ть. Получается, что градусная мера всей окруж-ти составляет 180° + 180° = 360°.

Этот факт известен и из жизни – когда кто-то делает полный оборот вокруг своей оси, говорят, что он повернулся на 360°. Теперь мы можем вернуться к случаю, когда две точки делят окруж-ть на две неравные друг другу дуги. Градусная мера меньшей из них будет равна величине соответствующего центрального угла (обозначим его как α). В сумме две дуги должны дать 360°. Значит, градусная мера большей дуги будет составлять 360° – α:

Задание. Точки А, В, С и D лежат на одной окруж-ти. Известно, что ⋃АСВ составляет 107°. Какова величина ⋃ADB?

Решение. Вместе дуги ⋃АСВ и ⋃АDВ образуют полную окруж-ть, поэтому их сумма равна 360°. Это позволяет составить уравнение и найти из него ⋃АDB:

Задание. Найдите величину ∠АОС на рисунке, если известны ⋃AВ и ⋃ВС:

Решение. Сначала найдем ⋃АС, учтя, что все три дуги, показанные на рисунке, в сумме составляют 360°:

Для доказательства построим две одинаковые хорды AВ и СD в окруж-ти и соединим их концы с центром:

В результате получились ∆АОВ и ∆ОСD. У них равны все три стороны, значит, сами эти треугольники равны. Тогда 

∠COD = ∠AOB

Но эти углы – центральные для дуг ⋃AВ и ⋃CD. Получается, что у этих дуг одинаковы их градусные меры, поэтому они также равны, ч. т. д.

Примечание. Всякая хорда окружности разбивает ее на две дуги – большую и меньшую. В данном правиле говорится именно равенстве меньших дуг.

Задание. На окруж-ти отмечены точки А, В и С так, что хорды AВ, ВС и АС равны. Найдите угол между радиусами окружности АО и ВО.

Решение.

Дуги ⋃AВ, ⋃ВС и ⋃АС стянуты равными хордами AВ, ВС и АС. Значит, они одинаковы. Но в сумме эти три дуги образуют окруж-ть величиной в 360°. Значит, каждая из этих дуг втрое меньше:

⋃AВ = ⋃BC = ⋃AC = 360°:3 = 120°

∠АОВ – центральный для ⋃AВ, значит, он равен ее градусной мере, то есть он составляет 120°.

Ответ: 120°.

Характеристики фигуры

Кроме того, что описание понятия окружности достаточно простое, её характеристики также несложные для понимания. С их помощью можно вычислить её длину. Внутренняя часть окружности состоит из множества точек, среди которых две — А и В — можно увидеть под прямым углом. Этот отрезок называют диаметром, он состоит из двух радиусов.

В пределах окружности имеются точки Х такие, что не изменяется и не равняется единице отношение АХ/ВХ. В окружности это условие обязательно соблюдается, в ином случае эта фигура не имеет форму круга. На каждую точку, из которых состоит фигура, распространяется правило: сумма квадратов расстояний от этих точек до двух других всегда превышает половину длины отрезка между ними.

Основные термины окружности

Для того чтобы уметь находить длину фигуры, необходимо знать основные термины, касающиеся её. Основные параметры фигуры — это диаметр, радиус и хорда. Радиусом называют отрезок, соединяющий центр круга с любой точкой на её кривой. Величина хорды равна расстоянию между двумя точками на кривой фигуры. Диаметр — расстояние между точками, проходящее через центр фигуры.

Теорема о вписанном в окружность угле

Из теоремы синусов и ее следствия можно сделать любопытный вывод: если известна одна сторона треугольника и синус противолежащего угла — можно найти и радиус описанной окружности. Но треугольник не задаётся только этими величинами. Это значит, что если треугольник еще не задан, найти радиус описанной окружности возможно.

Раскроем эту тему на примере теоремы о вписанном в окружность угле и следствиях из нее.

Теорема о вписанном угле: вписанный в окружность угол измеряется половиной дуги, на которую он опирается.

∠А = α опирается на дугу ВС. Дуга ВС содержит столько же градусов, сколько ее центральный угол ∠BOC.

Формула теоремы о вписанном угле:

Следствие 1 из теоремы о вписанном в окружность угле

Вписанные углы, опирающиеся на одну дугу, равны.

∠А = ∠BAC опирается на дугу ВС. Поэтому ∠A = 1/2(∠COB).

Если мы возьмём точки A1, А2,…,Аn и проведём от них лучи, которые опираются на одну и ту же дугу, то получим:

На рисунке изображено множество треугольников, у которых есть общая сторона СВ и одинаковый противолежащий угол. Треугольники являются подобными, и их объединяет одинаковый радиус описанной окружности.

Следствие 2 из теоремы о вписанном в окружность угле

Вписанные углы, которые опираются на диаметр, равны 90°, то есть прямые.

ВС — диаметр описанной окружности, следовательно ∠COB = 180°.

Следствие 3 из теоремы о вписанном в окружность угле

Сумма противоположных углов вписанного в окружность четырёхугольника равна 180°. Это значит, что:

∠A + ∠C = 180°

Угол ∠А = α опирается на дугу DCB. Поэтому DCB = 2α по теореме о вписанном угле.

Угол ∠С = γ опирается на дугу DAB. Поэтому DAB = 2γ.

Но так как 2α и 2γ — это вся окружность, то 2α + 2γ = 360°.

Следовательно: α + γ = 180°.

Поэтому: ∠A + ∠C = 180°.

Следствие 4 из теоремы о вписанном в окружность угле

Синусы противоположных углов вписанного четырехугольника равны. То есть:

sinγ = sin(180° — α)

Так как sin(180° — α) = sinα, то sinγ = sin(180° — α) = sinα

Определение величины

Площадь — это величина, характеризующая размер геометрической фигуры. Её определение — одна из древнейших практических задач. Древние греки умели находить площадь многоугольников: так, каменщикам, чтобы узнать размер стены, приходилось умножать её длину на высоту.

По прошествии долгих лет трудом многих мыслителей был выработан математический аппарат для расчета этой величины практически для любой фигуры.

На Руси существовали особые единицы измерения: копна, соха, короб, верёвка, десятина, четь и другие, так или иначе связанные с пахотой. Две последних получили наибольшее распространение. Однако от древнерусских землемеров нам досталось только само слово — «площадь».

Об этой статье

wikiHow работает по принципу вики, а это значит, что многие наши статьи написаны несколькими авторами. При создании этой статьи над ее редактированием и улучшением работали, в том числе анонимно, 173 человек(а).

Категории: Геометрия

English:Calculate the Circumference of a Circle

Français:calculer la circonférence d’un cercle

Italiano:Calcolare la Circonferenza di un Cerchio

Español:calcular la circunferencia

Deutsch:Einen Kreisumfang berechnen

Português:Calcular a Circunferência de um Círculo

Nederlands:De omtrek van een cirkel berekenen

中文:计算圆的周长

Bahasa Indonesia:Menghitung Keliling Lingkaran

Čeština:Jak vypočítat obvod kruhu

日本語:円の円周を計算する

ไทย:คำนวณเส้นรอบวงของวงกลม

हिन्दी:गोलाकार चीजों की परिधी ज्ञात करें

العربية:حساب محيط دائرة

Tiếng Việt:Tính Chu vi Hình tròn

한국어:원의 원주 구하는 법

Türkçe:Bir Dairenin Çevresi Nasıl Hesaplanır

Эту страницу просматривали 687 486 раз.

Да
Нет

Геометрия круга

7.07.2012 // Владимир Трунов   

Круг, его части, их размеры и соотношения — вещи, с которыми ювелир постоянно сталкивается. Кольца, браслеты, касты, трубки, шары, спирали — много всего круглого приходится делать. Как же всё это посчитать, особенно если тебе посчастливилось в школе прогулять уроки геометрии?..

Давайте сначала рассмотрим, какие у круга бывают части и как они называются.

  • Окружность — линия, ограничивающая круг.
  • Дуга — часть окружности.
  • Радиус — отрезок, соединяющий центр круга с какой-либо точкой окружности.
  • Хорда — отрезок, соединяющий две точки окружности.
  • Сегмент — часть круга, ограниченная хордой и дугой.
  • Сектор — часть круга, ограниченная двумя радиусами и дугой.

Интересующие нас величины и их обозначения:

  • R — радиус круга (здесь «радиус» — это уже не отрезок, а его длина);
  • D — диаметр круга — двойной радиус;
  • C — длина окружности;
  • L — длина дуги;
  • X — длина хорды;
  • H — высота сегмента;
  • φ — центральный угол — угол между двумя радиусами;
  • — площадь круга;
  • — площадь сектора;
  • — площадь сегмента.

Теперь посмотрим, какие задачи, связанные с частями круга, приходится решать.

  • Найти длину развертки какой-либо части кольца (браслета). Задан диаметр и хорда (вариант: диаметр и центральный угол), найти длину дуги.
  • Есть рисунок на плоскости, надо узнать его размер в проекции после сгибания в дугу. Заданы длина дуги и диаметр, найти длину хорды.
  • Узнать высоту детали, полученной сгибанием плоской заготовки в дугу. Варианты исходных данных: длина дуги и диаметр, длина дуги и хорда; найти высоту сегмента.

Жизнь подскажет и другие примеры, а эти я привел только для того, чтобы показать необходимость задания каких-нибудь двух параметров для нахождения всех остальных. Вот этим мы и займемся. А именно, возьмем пять параметров сегмента: D, L, X, φ и H. Затем, выбирая из них все возможные пары, будем считать их исходными данными и путем мозгового штурма находить все остальные.

Чтобы зря не грузить читателя, подробных решений я приводить не буду, а приведу лишь результаты в виде формул (те случаи, где нет формального решения, я оговорю по ходу дела).

И еще одно замечание: о единицах измерения. Все величины, кроме центрального угла, измеряются в одних и тех же абстрактных единицах.

И только центральный угол во всех случаях измеряется в градусах и ни в чём другом. Потому что, как показывает практика, люди, проектирующие что-нибудь круглое, не склонны измерять углы в радианах.

Фраза «угол пи на четыре» многих ставит в тупик, тогда как «угол сорок пять градусов» — понятна всем, так как это всего на пять градусов выше нормы. Однако, во всех формулах будет присутствовать в качестве промежуточной величины еще один угол — α.

По смыслу это половина центрального угла, измеренная в радианах, но в этот смысл можно спокойно не вникать.

2. Даны диаметр D и длина хорды X

;     длина дуги ;высота сегмента ;    центральный угол .

Поскольку хорда делит круг на два сегмента, у этой задачи не одно, а два решения. Чтобы получить второе, нужно в приведенных выше формулах заменить угол α на угол .

10. Даны центральный угол φ и высота сегмента H

;     диаметр ;длина дуги ;    длина хорды .

Внимательный читатель не мог не заметить, что я пропустил два варианта:

7. Даны длина дуги L и высота сегмента H

Это как раз те два неприятных случая, когда у задачи нет решения, которое можно было бы записать в виде формулы. А задача-то не такая уж редкая. Например, у вас есть плоская заготовка длины L, и вы хотите согнуть ее так, чтобы ее длина стала X (или высота стала H). Какого диаметра взять оправку (ригель)?

Задача эта сводится к решению уравнений:; — в варианте 5; — в варианте 7и хоть они и не решаются аналитически, зато легко решаются программным способом. И я даже знаю, где взять такую программу: на этом самом сайте, под именем Segment. Всё то, что я тут длинно рассказываю, она делает за микросекунды.

Для полноты картины добавим к результатам наших вычислений длину окружности и три значения площадей — круга, сектора и сегмента. (Площади нам очень помогут при вычислении массы всяких круглых и полукруглых деталей, но об этом — в отдельной статье.) Все эти величины вычисляются по одним и тем же формулам:

длина окружности ;площадь круга ;площадь сектора ;площадь сегмента ;

Программа Segment

Основные формулы для вычислений

Параметры используются в формулах вычислений величин окружности:

  • длину фигуры вычисляют умножением диаметра на число π и записывают таким образом: C = π*D.
  • Величина диаметра в два раза превышает длину радиуса. Иной способ вычисления радиуса — необходимо разделить длину круга на удвоенное π: R = C/(2* π) = D/2.
  • Диаметр рассчитывается с помощью радиуса или делением длины окружности на число π. Формула нахождения диаметра: D = C/π = 2*R.
  • Площадь круга, ограниченного окружностью, можно найти двумя способами: через радиус или диаметр. По формуле площадь равна четвёртой части произведения числа π и диаметра в квадрате или радиусу в квадрате, умноженному на π: S = π*R2 = π*D2/4.

Диаметр в формулах вычисления

В экономике и математике нередко появляется необходимость поиска длины окружности. Но и в повседневной жизни можно столкнуться с этой надобностью, к примеру, во время постройки забора вокруг бассейна круглой формы. Как рассчитать длину окружности по диаметру? В этом случае используют формулу C = π*D, где С — это искомая величина, D — диаметр.

Например, ширина бассейна равна 30 метрам, а столбики забора планируют поставить на расстоянии десяти метров от него. В этом случае формула расчёта диаметра: 30+10*2 = 50 метров. Искомая величина (в этом примере — длина забора): 3,14*50 = 157 метров. Если столбики забора будут стоять на расстоянии трёх метров друг от друга, то всего их понадобится 52.

Расчёты по радиусу

Для того чтобы кулинарное изделие не испачкалось, необходимо использовать декоративную обёртку. А как вырезать бумажный круг подходящего размера?

Те, кто немного знаком с математикой, понимают, что в этом случае нужно умножить число π на удвоенный радиус используемой формы. Например, диаметр формы равен 20 сантиметрам, соответственно, её радиус составляет 10 сантиметров. По этим параметрам находится необходимый размер круга: 2*10*3, 14 = 62,8 сантиметра.

Подручные способы вычисления

Если найти длину окружности по формуле нет возможности, то стоит воспользоваться подручными методами расчёта этой величины:

  • При небольших размерах круглого предмета его длину можно найти с помощью верёвки, обёрнутой вокруг один раз.
  • Величину большого предмета измеряют так: на ровной плоскости раскладывают верёвку, и по ней прокатывают круг один раз.
  • Современные студенты и школьники для расчётов используют калькуляторы. В режиме онлайн по известным параметрам можно узнавать неизвестные величины.

По площади сектора и центральному углу

  1. Запишите формулу для вычисления площади сектора.

  2. 2

    В формулу подставьте значения площади сектора и центрального угла. Эти значения должны быть даны в задаче. Убедитесь, что известна площадь сектора, а не площадь круга. Значение площади сектора подставляется вместо переменной , а значение центрального угла вместо переменной

    Например, если площадь сектора равна 50 см2, а центральный угол равен 120 градусов, формула запишется следующим образом: .

    .

  3. 3

    Разделите центральный угол на 360. Так вы определите, какую часть круга занимает сектор.

  4. 4

    Изолируйте .

    Например:

    Для этого разделите обе части формулы на обыкновенную дробь или десятичную дробь, равную части, которую занимает сектор на круге. Если вы не пользуетесь калькулятором, делите на обыкновенную дробь. С помощью калькулятора можно разделить на десятичную дробь, но помните, что чем меньше цифр после десятичной запятой, тем менее точный результат вы получите.

  5. 5

    Разделите обе части формулы на . Так вы изолируете переменную . Чтобы получить более точный результат, воспользуйтесь калькулятором. Число

    Например:

    округлите до 3,14159 или до 3,14.

Важные измерения

Радиус (обозначается r) — единственное необходимое измерение. Это расстояние от любой точки на поверхности сферы до её центра. Самый длинный отрезок, равный двум r, называется диаметром (d). Земля называется сфероидом, потому что она очень близка к шару, но не идеально круглая. Она немного вытянута на северном и южном полюсах.

Впервые вычислить площадь (S) поверхности шара удалось Архимеду. Именно он установил, что для того, чтобы найти S любого трёхмерного объекта, необходимо измерить его радиус. Для сферы получилась следующая формула: S = 4 * π * r ². Для того чтобы понять, как это работает, следует рассмотреть пример. Известно, что радиус детского мяча 10 см. Остаётся ещё одна неизвестная — число π. Это математическая константа, которая выражает отношение длины окружности к её диаметру и равна примерно 3,14. Далее, следует подставить цифры в уравнение:

  1. S = 4 * 3,14 * 10²;
  2. S мяча равна ≈ 1256 см².

Таким образом, можно найти площадь сферы через её радиус по формуле, полученной ещё в античности. Ещё одна важная характеристика — это объём (V) фигуры. Он вычисляется следующим образом: V = (4/3) * π * r³. Если придерживаться условий задачи, то V мяча = (4/3) * 3,14 * 10³ равен ≈ 4187 см ³. Сейчас можно избежать длительных расчётов, если нужно узнать площадь сферы, онлайн-калькуляторы — сервисы, которые очень в этом помогают.

Надо сказать, что внутренний конус может иметь основание с нулевым радиусом. Формула, по которой определяют площадь сектора, следующая: S = 2 * π * r * h, где h — высота. К слову, эта же формула применима, если необходимо найти S части шара, отрезанной плоскостью, то есть полусферы. Такая же формула применяется при нахождении S сегмента (часть между двумя параллельными плоскостями) и зоны сферы (изогнутая поверхность сферического сегмента).