Содержание
- Важные теоремы
- Понятие средней линии прямоугольного треугольника
- Прямоугольная фигура
- Различные типы треугольников в зависимости от длины их сторон
- ДРУГОЕ
- Как найти тангенс угла?
- Чему равна длина прямоугольника?
- Как найти биссектрису треугольника?
- Как найти диагональ прямоугольника?
- Как найти ширину прямоугольника?
- Как найти синус угла треугольника?
- Как найти синус внешнего угла?
- Как найти сторону прямоугольного треугольника?
- Как найти тангенс острого угла?
- Как найти угол прямоугольного треугольника?
- Как найти высоту треугольника?
- Свойства прямоугольного треугольника
- Тригонометрические формулы
- Игры с линейкой и карандашом
- Фигура из шести элементов
- Находим катет прямоугольного треугольника
- Теорема Пифагора, чтобы найти катет прямоугольного треугольника
- Тригонометрические соотношения, чтобы найти катет прямоугольного треугольника
- Найти катет прямоугольного треугольника при помощи синуса
- Найти катет прямоугольного треугольника при помощи косинуса
- Найти катет прямоугольного треугольника при помощи тангенса
- Найти катет прямоугольного треугольника при помощи котангенса
- Теорема о средней линии треугольника
- Площадь треугольника
- Применение в математике
- Формулы равнобедренного треугольника
- Алгоритм проведения расчётов
- Свойства средней линии треугольника
Важные теоремы
Знание теорем для рассматриваемой фигуры позволяет понять, как найти сторону, зная 2 стороны треугольника. Прежде всего применяются две базовые теоремы:
- Синусов. Как известно, синус — это тригонометрическая функция, которая вводится в прямоугольном треугольнике и определяет отношение противолежащего углу катета к гипотенузе. Теорема синусов для фигуры произвольного типа устанавливает следующее математическое взаимоотношение между отрезками и углами: a/sinA = b/sinB = c/sinC. Это означает, что вычислить длину любой стороны можно, если известен еще какой-нибудь отрезок и два угла.
- Косинусов. Как и синус, косинус тоже является тригонометрической функцией, которая определяет отношение катета прилежащего к гипотенузе прямоугольной фигуры. Теорему косинусов удобно записать в виде следующего математического выражения: c 2 = a 2 + b 2 — 2*a*b*cosC. С помощью этого равенства можно найти 3 сторону треугольника по 2 сторонам известным и углу между ними.
Первое выражение базируется на знаменитой теореме Пифагора, которая устанавливает связь между длинами двух катетов (меньшие стороны) и гипотенузы (большая сторона) в треугольнике с прямым углом. Если гипотенузу обозначить буквой c, тогда будет выполняться следующее равенство:
c 2 = a 2 + b 2 .
Если известные любые две стороны, то для определения третьей достаточно взять под квадратный корень соответствующую сумму или разницу квадратов.
Вторая из дополнительных теорем носит название философа Аполлония Пергского. Соответствующее ей математическое выражение выглядит так:
a 2 + b 2 = ½*c 2 + 2*Mc 2 .
Здесь Mc — это медиана, проведенная к стороне c из вершины C. Это равенство также называют в математике теоремой медианы.
Понятие средней линии прямоугольного треугольника
Математики говорят: в любом треугольнике можно провести три средних линии. В прямоугольном треугольнике этот отрезок будет равен половине основания — это и есть формула средней линии прямоугольного треугольника.
Прямой угол помогает нам применить другие признаки равенства и подобия. Для углов в прямоугольном треугольнике можно использовать геометрические тождества без дополнительных построений, а любую из сторон можно найти по теореме Пифагора.
В прямоугольном треугольнике две средние линии перпендикулярны катетам, а третья равна медиане, проведенной к гипотенузе. Средние линии острого и разностороннего треугольника не обладают подобными свойствами.
Важное свойство
Средняя линия прямоугольного треугольника делит его на четыре прямоугольных треугольника.
Прямоугольная фигура
С незапамятных времен человечество интересовалось свойствами геометрических объектов. Одним из них был прямоугольный треугольник, который еще в Древнем Египте считался священным, поскольку обладал характерными для него особенностями (речь идет о фигуре, соотношение сторон которой находится в отношении 3:4:5). Большие достижения в области изучения геометрических свойств рассматриваемой фигуры имели философы античной Греции, среди которых выделяется имя Пифагора.
Составляющие элементы и теорема Пифагора
Поскольку речь идет о треугольнике, то для него также характерно наличие трех сторон и трех внутренних углов. Однако, в отличие от остальных фигур данного вида, прямоугольный треугольник имеет один угол равный 90 °. Остальные два угла всегда являются острыми, что следует из фиксированной суммы их значений (180 °).
Чтобы узнать, как называются стороны прямоугольного треугольника, следует рассмотреть его рисунок.
Стороны a и b образуют прямой угол. Они называются катетами. Сторона c, которая лежит против угла 90 °, ограничена двумя острыми углами. Она носит название гипотенузы. Эти названия стоит запомнить, поскольку на них основаны все свойства и теоремы для этого типа треугольника.
Существует два вида рассматриваемой фигуры:
- равнобедренный;
- разносторонний.
Касательно равнобедренного прямоугольного геометрического объекта можно сказать, что его катеты друг другу равны, но они никогда не равны гипотенузе. Острые углы в таком треугольнике составляют по 45 °, что легко доказать, применяя теорему синусов, и учитывая, что сумма трех углов соответствует 180 °.
Теорема косинусов для рассматриваемого треугольника произвольной формы вырождается в простое равенство:
c 2 = a 2 + b 2 — 2*a*b*cosC ==>
c 2 = a 2 + b 2 .
Оно получается потому, что косинус прямого угла равен нулю согласно свойству этой тригонометрической функции. Формулировка «квадрат гипотенузы в точности соответствует сумме квадратов катетов данного треугольника» носит название известной теоремы Пифагора. Чтобы ее доказать, не прибегая к теореме косинусов, следует провести некоторые геометрические построения.
Основные свойства
Несмотря на общие свойства, которыми обладает прямоугольный треугольник, и которые характерны для любой фигуры с тремя вершинами и тремя сторонами, для него существуют также присущие только ему особенности. Основными из них являются следующие:
- Наличие двух острых углов, что видно из рисунка треугольника прямоугольного.
- Длина гипотенузы всегда больше длины любого из катетов, при этом сумма длин последних всегда будет больше, чем одна гипотенуза.
- Справедливость теоремы Пифагора.
- Если один из острых углов равен 30 °, то противолежащий к нему катет ровно в два раза меньше длины гипотенузы.
- Сумма длины гипотенузы и диаметра окружности, вписанной в треугольник, равна сумме длин катетов. Математически получается следующая запись: c + 2*r = a + b, здесь r — радиус вписанной в треугольник окружности. Получить это выражение можно легко, если применить теорему о вписанной в произвольный треугольник окружности, которая устанавливает связь между r, p и S: S = p*r, где S — площадь фигуры, p — ее полупериметр.
- Чтобы понять, как найти основание прямоугольного треугольника, следует рассмотреть его катеты. Поскольку они перпендикулярны друг другу, то один из них может служить высотой, а другой основанием. Тогда площадь вычислится, как полупроизведение этих сторон: S = ½*a*b.
- Медиана M делит прямой угол равнобедренного треугольника на две равные части, то есть является биссектрисой. Одновременно она является высотой, длина которой равна половине гипотенузы: M = ½*c. Это свойство справедливо для любого треугольника с прямым углом, а не только для равнобедренного.
- Длину высоты h, которая проведена из вершины с прямым углом на основание-гипотенузу, можно найти по следующей формуле через катеты: h = a*b/(a2 + b2)^0,5. Это равенство следует из формулы для площади фигуры.
Кроме названных свойств, следует отметить, что рассматриваемый геометрический объект является источником определения тригонометрических выражений (синуса, косинуса, котангенса и тангенса). Так, синусом угла ∠ A будет отношения противолежащего ему катета a к гипотенузе c, то есть sinA = a/c. Косинусом этого угла будет отношения ближайшего или прилежащего к нему катета к стороне c: cosA = b/c. Составлены целые таблицы этих функций, которые активно используются при решении геометрических проблем.
Различные типы треугольников в зависимости от длины их сторон
Разносторонний треугольник
Мы узнаем разносторонний треугольник по трем сторонам, которые имеют разную длину. Эта треугольная форма может быть построена только с тремя разными углами. Кроме того, один из них может быть прямым углом (или углом 90 °). В общем, название «произвольный треугольник» используется для разностороннего треугольника.
Равнобедренный треугольник
Мы говорим, что треугольник равнобедренный, если он имеет две стороны одинаковой длины и два равных угла при основании. Равнобедренный треугольник также можно узнать по тому факту, что его высота представляет его ось симметрии, его медиану и биссектрису.
Прямоугольный треугольник
Прямоугольный треугольник обязательно имеет прямой угол. Другими словами, сумма двух других его углов должна быть равна 90°. Прямоугольный треугольник также имеет гипотенузу.
Это противоположная сторона вершине с прямым углом. Прямой треугольник может быть разносторонним (или любым), если его три стороны имеют разную длину.
Кроме того, он может быть равнобедренным в том случае, если он имеет два одинаковых катета.
Равносторонний треугольник
Треугольник называется равносторонним, если он имеет три стороны одинаковой длины. Поэтому все его углы также равны и каждый по 60°. В равностороннем треугольнике любая высота также выступает в качестве медианы и биссектрисы.
ДРУГОЕ
Если Вы знаете пространственные координаты двух и более точек в определенной системе, то задачу: как найти длину…
Понятие катета пришло к нам из древнегреческого языка. В переводе с него катет означает перпендикуляр, опущенный,…
Каждый человек, учившийся в школе, обязательно сталкивался с термином «гипотенуза». И большинство из нас хотя бы…
Кто из нас не кричал в школе, что математика ему никогда не пригодиться. Всем нам казалось, что все эти заумные…
Синус (sin) — это одна из прямых тригонометрических функций. Подробнее о ней можно узнать из нашей статьи Что такое…
Как найти тангенс угла?
Тангенс (tg) — это одна из тригонометрических функций. Более подробную информацию о нем можно узнать из нашей статьи…
Чему равна длина прямоугольника?
Задача на нахождение длины прямоугольника может быть сформулирована по-разному. Разберемся, как найти длины сторон…
Как мы знаем, квадрат есть ни что иное, как прямоугольник с равными сторонами, либо ромб с прямыми углами. Диагональ…
Как найти биссектрису треугольника?
Одной из основ геометрии является нахождение биссектрисы, луча, делящего угол пополам. Биссектриса треугольника…
Как найти диагональ прямоугольника?
Задача на нахождение диагонали прямоугольника может быть сформулирована тремя разными способами. Рассмотрим подробнее…
В самом начале напомним, что треугольник – это многогранник, у которого имеются 3 угла. Как найти гипотенузу…
Задачами по решению треугольников (именно так называются подобные задачи) занимается особый раздел геометрии -…
Косинус – это всем известная тригонометрическая функция, которая к тому же является еще и одной из основных функций…
Как найти ширину прямоугольника?
Решение задач с четырехугольниками — один из наиболее обширных разделов геометрии, доставляющий школьникам немало…
Как найти синус угла треугольника?
Чтобы найти синус угла прямоугольного треугольника, нужно вспомнить, что такое синус по определению. А определение…
Как найти синус внешнего угла?
Синусы углов необходимо бывает вычислять не только в прямоугольном треугольнике, но и в любом другом. Для этого нужно…
Как найти сторону прямоугольного треугольника?
Геометрия — одна из самых сложных наук в школьной программе. Пожалуй, труднее всего приходится тем, кто ищет решение…
Как найти тангенс острого угла?
Вспомним школьный курс математики и поговорим о том, что такое тангенс и как найти тангенс угла. Сначала определим, что…
Как найти угол прямоугольного треугольника?
Треугольник — строгая геометрическая фигура, вписывающаяся в общие законы, которым подчиняется пространство. Именно эти…
Как найти высоту треугольника?
Прежде всего, треугольник – это геометрическая фигура, которая образуется тремя, не лежащими на одной прямой, точками,…
Свойства прямоугольного треугольника
Прямоугольный треугольник — это геометрическая фигура, в которой один угол обязательно прямой. Треугольник с прямым…
Тригонометрические формулы
Для нахождения длины катета прямоугольного треугольника используют простые формулы. Для их применения нужно знать значение любой из сторон и величину разворота произвольной вершины. Существует четыре способа, позволяющих найти катет с использованием тригонометрических правил:
- В основе лежит аксиома, что синус находится из отношения противолежащего катета к гипотенузе. Например, пусть известно что длина гипотенузы составляет 100 сантиметров, а вершина A имеет разворот равный 30 градусам. Используя тригонометрические таблицы, можно утверждать, что синус угла A составляет ½. Учитывая преобразованное выражение, находят катет: a = 100 / 2 =50 (см). Таким образом, синус острого угла численно равен отношению одного из катетов, деленного на гипотенузу: sin A = BC/AB.
- Используется правило, что косинус в прямоугольнике представляет собой отношение прилежащего катета к прямому углу и гипотенузе: cosA = AC/AB. Например, пусть разворот вершины C равен 60 градусам, а гипотенуза равна 100 сантиметрам. Согласно тригонометрической таблице, угол в 60 градусов равен ½. Подставив это значение в формулу, можно найти значение катета: a=cos∠C*a; b=½*100=50 сантиметров.
- Тангенс угла можно вычислить, разделив значение длины противолежащего катета к прилежащему. Математическая формула этого утверждения имеет вид: tg = BC/AC. Катет многоугольника может быть найден как b = tg * a. Например, известно, что у фигуры один из углов равен 45 градусов, а длина гипотенузы составляет 100 сантиметров. Так как тангенс 45 градусов равен единице, то ответом на задачу будет: a = 1*100 = 100 сантиметров.
- Котангенс определяется из соотношения прилежащего катета к противолежащему. Фактически это величина, обратная тангенсу: ctg = AC/BC. Например, пусть разворот угла A составляет 30 градусов, а длина катета, находящегося напротив него, равняется 50 сантиметрам. Котангенс 30 градусов соответствует корню из трёх. Подставив в формулу известные данные, можно вычислить неизвестный катет: b =50√3 сантиметров.
Зная, как выглядят тригонометрические формулы и содержание двух теорем, вычислить значение катета можно будет в большинстве поставленных задач.
Игры с линейкой и карандашом
Простая задача: как найти синус угла, нарисованного на бумаге? Для решения понадобится обычная линейка, треугольник (или циркуль) и карандаш. Простейшим способом вычислить синус угла можно, разделив дальний катет треугольника с прямым углом на длинную сторону — гипотенузу. Таким образом, сначала нужно дополнить острый угол до фигуры прямоугольного треугольника, прочертив перпендикулярную одному из лучей линию на произвольном расстоянии от вершины угла. Потребуется соблюсти угол именно 90°, для чего нам и понадобится канцелярский треугольник.
Использование циркуля немного точнее, но займёт больше времени. На одном из лучей нужно отметить 2 точки на некотором расстоянии, настроить на циркуле радиус, примерно равный расстоянию между точками, и прочертить полуокружности с центрами в этих точках до получения пересечений этих линий. Соединив точки пересечения наших окружностей между собой, мы получим строгий перпендикуляр к лучу нашего угла, остаётся лишь продлить линию до пересечения с другим лучом.
В полученном треугольнике нужно линейкой измерить сторону напротив угла и длинную сторону на одном из лучей. Отношение первого измерения ко второму и будет искомой величиной синуса острого угла.
Фигура из шести элементов
Под геометрическим элементом полагают какой-либо объект, который имеет определенную меру и является составляющей частью некоторой фигуры. Например, для сферы основными образующими элементами являются радиус и центр.
Как известно, треугольник — это фигура, которая состоит из трех отрезков и такого же количества вершин. При этом все отрезки попарно пересекаются. Из определения фигуры следует, что ее образуют два типа элементов, общее количество которых составляет 6:
- сторона (3);
- вершина (3).
Дополнительные отрезки
Несмотря на всю простоту построения фигуры, она обладает большим количеством дополнительных элементов, которые ее могут определять. Среди них самыми важными являются следующие:
- Медиана — отрезок, который соединяет вершину и середину противоположной стороны. Таких отрезков в треугольнике три. Все они пересекаются в одной точке, которая является центром масс фигуры. Эта точка делит каждую медиану в отношении 2:1, начиная от вершины. Каждый из трех названных отрезков делит треугольник на две аналогичных фигуры равной площади.
- Биссектриса — отрезок, который отличается от медианы тем, что он делит пополам соответствующий угол.
- Высота — перпендикуляр, который из вершины опускается на сторону фигуры. Его удобно использовать при вычислении площади или при определении его углов через тригонометрические выражения. Для некоторых типов треугольников высота может совпадать со стороной (катет в прямоугольной фигуре).
- Радиусы вписанной и описанной окружностей. Эти замкнутые симметричные кривые можно провести для любого треугольника. Указанные радиусы однозначно определяются через стороны и углы фигуры.
- Средняя линия — это соединяющий две середины сторон отрезок. Его особенность заключается в том, что он всегда параллелен третьей стороне и равен половине ее длины.
Виды треугольников
Разработана достаточно развитая классификация рассматриваемых фигур. Главными ее пунктами являются значения углов треугольника и взаимоотношение между его отрезками. Так, если в фигуре все углы острые, то она называется остроугольной. Если же один из углов больше 90 °, то треугольник полагается тупоугольным. Чаще всего в задачах рассматривают следующие виды:
- Равнобедренный — две стороны имеют одинаковую длину. Как следствие, противолежащие им углы равны между собой.
- Равносторонний — три отрезка равны друг другу. Поэтому все углы в таком треугольнике также равны и составляют всегда по 60 °.
- Прямоугольный. Из названия следует, что он содержит один внутренний угол, который составляет 90 °. Для этого вида фигуры применима знаменитая теорема Пифагора.
Основные свойства и понятия
Треугольник является одной из самых изученных фигур в геометрии. Для него известны многие теоремы, которые с успехом используются при решении задач. Существует два основных свойства фигуры, которые следуют из характеристик евклидового пространства:
- Равенство суммы трех углов 180 °, то есть A + B + C = 180 °. Этот факт доказал еще Евклид в своем знаменитом труде «Элементы». По этой причине треугольник не может содержать больше одного прямого или тупого внутреннего угла.
- Если известны три отрезка a, b и c такие, что выполняется равенство a + b = c, то из них составить треугольник невозможно. Это фундаментальное свойство говорит о том, что для всякого типа рассматриваемой фигуры сумма длин ее двух любых сторон всегда больше длины третьей.
Помимо названных свойств, следует знать о треугольнике еще такое понятие, как подобие. Его суть состоит в том, что одна из рассматриваемых фигур является точной копией в миниатюре другой. Для подобных треугольников все углы равны попарно, а все три стороны относятся соответственно попарно друг к другу с одним и тем же коэффициентом подобия.
Еще одной полезной характеристикой рассматриваемой фигуры является ее качество (CT). Вычисляется оно по следующей формуле:
CT = (a + b — c)*(b + c — a)*(c + a — b)/(a*b*c).
Величина CT лежит в пределах от 0 до 1. Она показывает степень близости фигуры к равностороннему, то есть к наиболее симметричному объекту. Если CT < 0,5, то треугольник считается вырожденным (один из его углов будет тупым, причем чем меньше CT, тем больше величина этого угла), если же CT > 0,5, то фигура характеризуется, как имеющая хорошее качество.
Находим катет прямоугольного треугольника
Существует несколько способов, позволяющих узнать длину катета. Хотелось бы рассмотреть бы их подробнее.
Теорема Пифагора, чтобы найти катет прямоугольного треугольника
Если нам известны гипотенуза и катет, то мы можем найти длину неизвестного катета по теореме Пифагора. Звучит она так: “Квадрат гипотенузы равен сумме квадратов катетов”. Формула: c²=a²+b², где c – гипотенуза, a и b – катеты. Преобразовываем формулу и получаем: a²=c²-b².
Пример. Гипотенуза равна 5 см, а катет – 3 см. Преобразовываем формулу: c²=a²+b² → a²=c²-b². Далее решаем: a²=5²-3²; a²=25-9; a²=16; a=√16; a=4 (см).
Тригонометрические соотношения, чтобы найти катет прямоугольного треугольника
Также можно найти неизвестный катет, если известны любая другая сторона и любой острый угол прямоугольного треугольника. Есть четыре варианта нахождения катета при помощи тригонометрических функций: по синусу, косинусу, тангенсу, котангенсу. Для решения задач нам поможет таблица, которая находится чуть ниже. Рассмотрим эти варианты.
Найти катет прямоугольного треугольника при помощи синуса
Синус угла (sin) – это отношение противолежащего катета к гипотенузе. Формула: sin=a/c, где а – катет, лежащий против данного угла, а с – гипотенуза. Далее преобразуем формулу и получаем: a=sin*c.
Пример. Гипотенуза равна 10 см, угол А равен 30 градусов. По таблице вычисляем синус угла А, он равен 1/2. Затем по преобразованной формуле решаем: a=sin∠А*c; a=1/2*10; a=5 (см).
Найти катет прямоугольного треугольника при помощи косинуса
Косинус угла (cos) – это отношение прилежащего катета к гипотенузе. Формула: cos=b/c, где b – катет, прилежащий к данному углу, а с – гипотенуза. Преобразуем формулу и получим: b=cos*c.
Пример. Угол А равен 60 градусов, гипотенуза равна 10 см. По таблице вычисляем косинус угла А, он равен 1/2. Далее решаем: b=cos∠A*c; b=1/2*10, b=5 (см).
Найти катет прямоугольного треугольника при помощи тангенса
Тангенс угла (tg) – это отношение противолежащего катета к прилежащему. Формула: tg=a/b, где а – противолежащий к углу катет, а b – прилежащий. Преобразуем формулу и получаем: a=tg*b.
Пример. Угол А равен 45 градусов, гипотенуза равна 10 см. По таблице вычисляем тангенс угла А, он равен Решаем: a=tg∠A*b; a=1*10; a=10 (см).
Найти катет прямоугольного треугольника при помощи котангенса
Котангенс угла (ctg) – это отношение прилежащего катета к противолежащему. Формула: ctg=b/a, где b – прилежащий к углу катет, а – противолежащий. Иначе говоря, котангенс – это “перевернутый тангенс”. Получаем: b=ctg*a.
Пример. Угол А равен 30 градусов, противолежащий катет равен 5 см. По таблице тангенс угла А равен √3. Вычисляем: b=ctg∠A*a; b=√3*5; b=5√3 (см).
Итак, теперь вы знаете, как находить катет в прямоугольном треугольнике. Как видите, это не так уж и сложно, главное – запомнить формулы.
В математике при рассмотрении треугольника обязательно уделяют много внимание его сторонам. Поскольку данные элементы формируют эту геометрическую фигуру
Стороны треугольника используются для решения многих задач по геометрии.
Теорема о средней линии треугольника
Теорема о средней линии треугольника звучит так:
Средняя линия треугольника параллельна основанию и равна его половине. А так выглядит формула нахождения средней линии треугольника:
Докажем теорему:
-
По условию нам дано, что MA = MB, NA = NC
-
Рассмотрим два образовавшихся треугольника ΔAMN и ΔABC.
(по второму признаку подобия треугольников).
-
Так как △AMN ~ △ABC, то Следовательно, ВС = 2МN. Значит, доказано, что средняя линия равна половине основания.
-
Так как △AMN ~ △ABC, то ∠1 = ∠2 . Так как ∠1 и ∠2 — соответственные углы, то по признаку параллельности прямых MN || BC.
Параллельность средней линии и соответствующего ей основания доказана.
Теорема доказана.
Пример 1. В треугольнике ΔABC AB = 8, BC = 7, CA = 5, точки M, K, N — середины сторон AB, BC, CA соответственно. Найти периметр ΔMNK.
Соединим середины сторон треугольника ΔABC и получим его средние линии, которые образуют треугольник ΔMNK. Найдем их длины по теореме о средней линии:
Ответ: периметр треугольника ΔMNK равен 10.
Пример 2. В прямоугольном треугольнике АВС есть две средние линии: MN и NP, равные 3 и 4 соответственно. Найти площадь большого прямоугольного треугольника.
Решение:
-
Площадь треугольника равна половине произведения основания на высоту. Так как треугольник прямоугольный, то его площадь найдем как половину произведения катетов:
S = ½ × AC × BC
-
Так как MN — средняя линия, то по теореме о средней линии она равна половине катета AC:
MN = ½ × AC
Значит, AC = 2MN = 2 × 3 = 6.
-
Так как NP — средняя линия, то по теореме о средней линии она равна половине катета BC:
NP = ½ × BC
Значит, BC = 2NP = 2 × 4 = 8.
-
Тогда найдем площадь большого треугольника, используя формулу, указанную выше:
S = ½ × 6 × 8 = ½ × 48 = 24.
Ответ: площадь большого прямоугольного треугольника равна 24.
Площадь треугольника
Площадь разностороннего треугольника
Вычисляем площадь треугольника без особенностей — все его стороны разные и все углы разные.
Если известны две стороны треугольника и угол между ними, то площадь разностороннего треугольника вычисляется по формуле «площадь треугольника через две стороны и угол между ними»:
Если известны высота в треугольнике и основание, то используется формула площади треугольника через основание и высоту:
Площадь равнобедренного треугольника
Площадь треугольника через основание и сторону можно найти, если известны сторона и основания равнобедренного треугольника.
К равнобедренному треугольнику также применима формула площади треугольника через основание, сторону и угол между ними:
Найти площадь равнобедренного треугольника можно также через боковые стороны и угол между ними.
Площадь равнобедренного треугольника через основание и угол между боковыми сторонами:
Площадь прямоугольного треугольника
Приведем формулы площади прямоугольного треугольника. Формула площади прямоугольного треугольника через катет и прилежащий угол:
Площадь прямоугольного треугольника по радиусу вписанной окружности и гипотенузе
Площадь прямоугольного треугольника, если в него вписана окружность:
Площадь равностороннего треугольника
Площадь равностороннего треугольника можно найти через радиус описанной окружности.
Если дан радиус вписанной окружности, то площадь равностороннего треугольника можно найти по формуле:
Площадь равностороннего треугольника, если известна сторона треугольника:
Площадь равностороннего треугольника, если известна высота треугольника:
Применение в математике
Особенно зачастую синусы и косинусы применяются при решении прямоугольных треугольников и задач, связанных с ними. Удобство синусов и косинусов обнаружило свое отражение и в технике. Углы и стороны было примитивно оценивать по теоремам косинусов и синусов, разбивая трудные фигуры и объекты на «примитивные» треугольники. Инженеры и архитекторы, зачастую имеющие дело с расчетами соотношения сторон и градусных мер, тратили много времени и усилий для вычисления косинусов и синусов не табличных углов. Тогда «на подмогу» пришли таблицы Брадиса, содержащие тысячи значений синусов, косинусов, тангенсов и котангенсов различных углов. В советское время некоторые преподаватели принуждали своих подопечных учить страницы таблиц Брадиса назубок.
Площадь треугольника равна половине произведения его сторон на синус угла между ними.
Доказательство:
Рассмотрим произвольный треугольник ABC. Пусть в нем сторона BC = a, сторона CA = b и S — площадь этого треугольника. Необходимо доказать, что S = (1/2)*a*b*sin(C)
.
Для начала введем прямоугольную систему координат и поместим начало координат в точку С. Расположим нашу систему координат так, чтобы точка B лежала на положительном направлении оси Сх, а точка А имела бы положительную ординату.
Если все выполнить правильно, то должен получится следующий рисунок.
Площадь данного треугольника можно вычислить по следующей формуле: S = (1/2)*a*h
, где h — это высота треугольника. В нашем случае высота треугольника h равна ординате точки А, то есть h = b*sin(C).
Учитывая полученные результат, формулу площади треугольника можно переписать следующим образом: S = (1/2)*a*b*sin(C). Что и требовалось доказать.
Формулы равнобедренного треугольника
Формулы сторон равнобедренного треугольника
b — основание равнобедренного треугольника
a — равные стороны равнобедренного треугольника
α — углы при основании
β — угол, образованный равными сторонами
Формулы длины стороны (основания b) равнобедренного треугольника
Формулы длины равных сторон равнобедренного треугольника (стороны a):
Формулы высоты, медианы, биссектрисы равнобедренного треугольника
b — основание равнобедренного треугольника
a — равные стороны равнобедренного треугольника
α — углы при основании
β — угол, образованный равными сторонами
L — высота, биссектриса и медиана
Формулы высоты, биссектрисы и медианы равнобедренного треугольника, через сторону и угол (L)
Формула высоты, биссектрисы и медианы равнобедренного треугольника, через стороны (L)
Алгоритм проведения расчётов
Если все подготовлено, то можно переходить к самим расчётам. Если нужно вычислить площадь поверхности правильной формы, то здесь нет ничего сложного – эти формулы уж точно никто не позабудет.
Без рулетки никакИсточник sv.decorexpro.com
Другое дело, когда стена, пол, потолок имеют сложные очертания. Здесь уже придётся сочетать различные приёмы. То есть поделить комнату на несколько блоков, после чего рассчитать площадь каждого из них. А далее от общей площади вычесть или прибавить их.
Вовсе не обязательно мерить длину стен строго вдоль плинтусов – замер можно проводить в любом удобном месте, если, скажем, мешает мебель. То есть выше, ниже, в середине, главное соблюсти при этом строгую параллель полу и потолку. Никаких диагоналей или наклонов! В противном случае расчёты будут неверными.
При возникновении трудностей можно всегда заручиться поддержкой кого-то из домашних.
Правильная геометрия
Каких-либо сложностей касательно того, как вычислить площадь, здесь нет. В случае простого прямоугольника достаточно замерить всего две стороны и высоту, ведь у такой фигуры противоположные стороны равны. Чтобы убедиться, что комната имеет правильные очертания, достаточно приложить к углам строительный угольник, правда не всегда удаётся получить чёткую картину.
Формула для расчёта прямоугольника известна каждому:
S=a⋅b, где:
- S – рассчитываемая площадь;
- a – длина;
- b – ширина.
Кажется, что формулу площади прямоугольника забыть невозможно, хотя у некоторых получается и этоИсточник wezanu.ritobypus.ru.net
Такая формула актуальна для стен, потолка, пола, дверей, окон и прочих прямоугольных поверхностей
В случае запланированного ремонта важно получить чистые значения. Для этого следует от площади стены вычесть площадь дверей, окон
Общую площадь всей комнаты можно рассчитать по такой формуле – h(a⋅2+b⋅2). Где h – высота помещения.
С квадратом все ещё проще – достаточно замерить одну сторону и возвести её значение в квадрат.
Помещения с неправильными очертаниями
Но как посчитать площадь комнаты, если она имеет неправильную форму поверхностей? Здесь есть некоторые нюансы:
- Стены. В мансардной комнате стена может иметь форму трапеции или треугольника.
- Потолок. В тех же мансардных помещениях данная плоскость может быть под определённым углом. Также есть варианты с ломаной поверхностью, когда несколько плоскостей пересекаются межу собой.
Но ничего страшного здесь нет и не нужно углубляться в тригонометрию. Достаточно любую сложную поверхность стен или потолка визуально разделить на несколько простых плоскостей. После этого остаётся рассчитать площадь каждой фигуры и сложить их вместе.
Случай чуть-чуть посложнее – но не намногоИсточник wezanu.ritobypus.ru.net
Для облегчения ниже приведём несколько формул площадей, которые могут пригодиться:
Круг:
- S=π⋅R² – нужен только радиус.
- Сектор круга определятся так – S=0,5pr.
Параллелограмм:
- S=a⋅b⋅sin(α) – по двум сторонам и углу между ними.
- S=a⋅h – по высоте и основанию.
Треугольник:
- S=0,5⋅b⋅h – по основанию и высоте.
- S=0,5⋅ab⋅sin(α) – по сторонам и углу.
- S=√(p·(p-a)·(p-b)·(p-c)) – формула Герона по трем сторонам.
Трапеция:
- S=0,5⋅h⋅(a+b) – по высоте и основанию.
- S=m⋅h – по средней линии и высоте.
Эллипс:
- S = π⋅R1⋅R2 – по двум радиусам R1 и R2
- S=π⋅a⋅b – через полуоси a и b.
Обозначения: π – 3,14159 (всем известное число пи), R – радиус, a, b, c – стороны фигуры, p – полупериметр (для формулы Герона), h – высота, m – средняя линия.
Свойства средней линии треугольника
Признак средней линии треугольника: если отрезок в треугольнике проходит через середину одной из его сторон, пересекает вторую и параллелен третьей — этот отрезок можно назвать средней линией этого треугольника.
Свойства:
- Средняя линия равна половине длины основания и параллельна ему.
- Средняя линия отсекает треугольник, подобный данному с коэффициентом 1/2; его площадь равна четверти площади данного.
- Три средние линии разделяют исходную фигуру на четыре равных треугольника. Центральный из них называют дополнительным.
- Три средние линии разделяют исходный прямоугольный треугольник на четыре равных прямоугольных треугольника.