Свойства медианы треугольника (егэ 2022)

Содержание

Задача про медиану в прямоугольном треугольнике

Медианы прямоугольного треугольника, проведенные к катетам, равны, соответственно,  3 см и 4 см. Найдите гипотенузу треугольника

Решение

Прежде чем начать решение задачи, обратим внимание на соотношение длины гипотенузы прямоугольного треугольника и медианы, которая опущена на нее. Для этого обратимся к формулам 2, 4, 5 свойств медианы в прямоугольном треугольнике

В этих формулах явно указано соотношение гипотенузы и медианы, которая на нее опущена как 1 к 2. Поэтому,для удобства будущих вычислений (что никак не повлияет на правильность решения, но сделает его более удобным), обозначим длины катетов AC и BC через переменные x и y как 2x и 2y (а не x и y). 

Рассмотрим прямоугольный треугольник ADC. Угол C у него прямой по условию задачи, катет AC — общий с треугольником ABC, а катет CD равен половине BC согласно свойствам медианы. Тогда, по теореме Пифагора   

AC2 + CD2 = AD2

Поскольку AC = 2x, CD = y (так как медиана делит катет на две равные части), то
4×2 + y2 = 9 

Одновременно, рассмотрим прямоугольный треугольник EBC. У него также угол С прямой по условию задачи, катет BC является общим с катетом BC исходного треугольника ABC, а катет EC по свойству медианы равен половине катета AC исходного треугольника ABC.
По теореме Пифагора:
EC2 + BC2  = BE2

Поскольку EC = x (медиана делит катет пополам), BC = 2y, то
x2 + 4y2  = 16

Так как треугольники ABC, EBC и ADC связаны между собой общими сторонами, то оба полученных уравнения также связаны между собой.
Решим полученную систему уравнений. 
4×2 + y2 = 9
x2 + 4y2  = 16 

Сложим оба уравнения (впрочем, можно было выбрать и любой другой способ решения).
5×2 + 5y2 = 25  
5( x2 + y2 ) = 25
x2 + y2 = 5 

Обратимся к исходному треугольнику ABC. По теореме Пифагора  
AC2 + BC2  = AB2
Так как длина каждого из катетов нам «известна», мы приняли, что их длина равна 2x и 2y, то есть
4×2 + 4y2 = AB2 Так как оба слагаемых имеют общий множитель 4, вынесем его за скобки      
4 ( x2 + y2 ) = AB2  
Чему равно  x2 + y2 мы уже знаем (см. выше x2 + y2 = 5), поэтому просто подставим значения вместо  x2 + y2 

AB2 = 4 х 5
AB2 = 20
AB = √20 = 2√5  

Ответ: длина гипотенузы равна 2√5     

Угол между высотой и медианой треугольникаОписание курса Медіана прямокутного трикутника   

Свойства равнобедренного треугольника

Чтобы понять суть равнобедренного треугольника, нужно думать как равнобедренный треугольник, стать равнобедренным треугольником — и выучить 5 теорем.

Теоремы помогут доказать, что треугольник равнобедренный, а не какой-нибудь ещё. Давайте приступим.

Теорема 1. В равнобедренном треугольнике углы при основании равны.

Доказательство теоремы:

Мы выяснили, что AС — основание равнобедренного треугольника. Поскольку боковые стороны треугольника равны AB = СB, то и углы при основании — равны. ∠ BАC = ∠ BСA. Изи!

Теорема 2: В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой.

Теорема 3: В равнобедренном треугольнике медиана, проведенная к основанию, является биссектрисой и высотой.

Теорема 4: В равнобедренном треугольнике высота, проведенная к основанию, является биссектрисой и медианой.

Чтобы доказать все эти теоремы, вспомним, что такое биссектриса, медиана и высота.

Биссектриса — луч, который исходит из вершины угла и делит этот угол на два равных угла.

Даже если вы не знаете определения, то про крысу, бегающую по углам и делящую их пополам, наверняка слышали. Она не даст вам забыть, что такое биссектриса. А если вам не очень приятны крысы, то вместо нее бегать может кто угодно. Биссектриса — это киса. Биссектриса — это лИса. Никаких правил для воображения нет. Все правила — для геометрии.

Обратите внимание на рисунок. В представленном равнобедренном треугольнике биссектрисой будет отрезок BH

Медиана — линия, которая соединяет вершину треугольника с серединой противолежащей стороны.

Для медианы не придумали веселого правила, как с биссектрисой, но можно его придумать. Например, буддийская запоминалка: «Медиана — это Лама, бредущий из вершины треугольника к середине его основания и обратно».

В данном треугольнике медианой является отрезок BH.

Высота треугольника — перпендикуляр, опущенный из вершины треугольника на противоположную сторону.

Высотой в представленном равнобедренном треугольнике является отрезок BH.

Доказательство теорем 2, 3, 4 будет коллективным, поскольку из определений видно, что биссектриса, медиана и высота равнобедренного треугольника — это одно и то же.

А вот и доказательство:

  • Δ ABC
  • Высота BH делит Δ ABC на два прямоугольных треугольника ABH и CBH
  • Δ ABH = Δ CBH, поскольку гипотенузы и катет равны по теореме Пифагора
  • Согласно теореме 1: в треугольниках ABH и BCH ∠ BАH = ∠ BСH, поскольку углы при основании равнобедренного треугольника равны
  • Так как Δ ABC — равнобедренный, то его боковые стороны равны AB = BC
  • AH = CH, поскольку точка H делит основание Δ ABC на две равные части
  • Δ ABH = Δ BCH
  • Значит, отрезок BH одновременно биссектриса, медиана и высота равнобедренного треугольника ABC

Вуаля, сразу три теоремы доказаны.

Теорема 5: Если три стороны одного треугольника равны трем сторонам другого треугольника, то такие треугольники равны (третий признак равенства треугольников).

Доказательство:

Дано два Δ ABC = Δ A1B1C1.

Чтобы доказать равенство треугольников, мысленно наложите один треугольник на другой так, чтобы стороны совпали. Точка A должна совпасть с точкой А1, точка B должна совпасть с точкой B2, точка С — с точкой С1.

Если все стороны совпадают — треугольники равны, а теорема доказана.

Теорема о трех медианах треугольника

Что бы это такое значило? Посмотри на рисунок. На самом деле утверждений в этой теореме целых два. Ты это заметил?

Давай попробуем разгадать секрет этой теоремы, то есть доказать ее.

Доказательство теоремы о трех медианах треугольника

Сначала проведем не все три, а только две медианы. Они-то уж точно пересекутся, правда? Обозначим точку их пресечения буквой \( \displaystyle E\).

Соединим точки \( \displaystyle N\) и \( \displaystyle K\). Что получилось?

Конечно, \( \displaystyle NK\) – средняя линяя \( \displaystyle \triangle ABC\). Ты помнишь, что это значит?

  • \( \displaystyle NK\) параллельна \( \displaystyle AC\);
  • \( \displaystyle NK=\frac{AC}{2}\).

А теперь проведем ещё одну среднюю линию: отметим середину \( \displaystyle AE\) – поставим точку \( \displaystyle F\), отметим середину \( \displaystyle EC\) – поставим точку \( \displaystyle G\).

Теперь \( \displaystyle FG\) – средняя линия \( \displaystyle \triangle AEC\). То есть:

  • \( \displaystyle FG\) параллельна \( \displaystyle AC\);
  • \( \displaystyle FG=\frac{AC}{2}\).

Заметил совпадения? И \( \displaystyle NK\) , и \( \displaystyle FG\) – параллельны \( \displaystyle AC\). И \( \displaystyle NK=\frac{AC}{2}\), и \( \displaystyle FG=\frac{AC}{2}\).

Что из этого следует?

  • \( \displaystyle NK\) параллельна \( \displaystyle FG\);
  • \( \displaystyle NK=FG\)

Посмотри теперь на четырехугольник \( \displaystyle NKGF\). У какого четырехугольника противоположные стороны (\( \displaystyle NK\) и \( \displaystyle FG\)) параллельны и равны?

Конечно же, только у параллелограмма!

Значит, \( \displaystyle NKGF\) – параллелограмм. Ну и что?

А давай вспомним свойства параллелограмма. Например, что тебе известно про диагонали параллелограмма? Правильно, они делятся точкой пересечения пополам.

Снова смотрим на рисунок.

Теорема о медиане и площади треугольника

Почему? А давай вспомним самую простую форму площади треугольника. \( S=\frac{1}{2}a~\cdot h\).

И применим эту формулу аж два раза!

Посмотри, медиана \( \displaystyle BM\) разделила \( \displaystyle \triangle ABC\) на два треугольника: \( \displaystyle \triangle ABM\) и \( \displaystyle \triangle BMC\).

Но! Высота-то у них одна и та же – \( \displaystyle BH\)!

Только в \( \displaystyle \triangle ABM\) эта высота \( \displaystyle BH\) опускается на сторону \( \displaystyle AM\), а в \( \displaystyle \triangle BMC\) – на продолжение стороны \( \displaystyle CM\).

Удивительно, но вот бывает и так: треугольники разные, а высота – одна. И вот, теперь-то и применим два раза формулу

\( S=\frac{1}{2}a~\cdot h\).

1) B \( \displaystyle \triangle ABM\):

“\( \displaystyle a\)” – это \( \displaystyle AM\)“\( \displaystyle h\)” – это \( \displaystyle BH\) \( \displaystyle \Rightarrow {{S}_{\triangle ABM}}=\frac{1}{2}~AM~\cdot BH\)

2) B \( \displaystyle \triangle BMC\):

“\( \displaystyle a\)” – это \( \displaystyle CM\)“\( \displaystyle h\)” – это опять \( \displaystyle BH\) \( \displaystyle \Rightarrow {{S}_{\triangle BMC}}=\frac{1}{2}~CM~\cdot BH\)

Основные линии треугольника

Медиана

Медиана треугольника — это отрезок, соединяющий верщину треугольника
с серединой противолежащей стороны этого треугольника.

Свойства медиан треугольника

  1. Медиана разбивает треугольник на два треугольника одинаковой площади.
  2. Медианы треугольника пересекаются в одной точке, которая делит каждую
    из них в отношении 2:1, считая от вершины. Эта точка называется центром
    тяжести
    треугольника.
  3. Весь треугольник разделяется своими медианами на шесть равновеликих
    треугольников.

Биссектриса

Биссектриса
угла
— это луч, который исходит из его вершины, проходит между его
сторонами и делит данный угол пополам. Биссектрисой треугольника называется
отрезок биссектрисы угла треугольника, соединяющий вершину с точкой на
противолежащей стороне этого треугольника.

Свойства биссектрис треугольника

  1. Биссектриса угла — это геометрическое место точек, равноудаленных от
    сторон этого угла.
  2. Биссектриса внутреннего угла треугольника делит противолежащую сторону
    на отрезки, пропорциональные прилегажащим сторонам: .
  3. Точка пересечения биссектрис треугольника является

Высота

Высотой
треугольника называется перпендикуляр, проведенный из вершины треугольника
к прямой, содержащей противоположную сторону этого треугольника.

Свойства высот треугольника

  1. В высота, проведенная
    из вершины прямого угла, разбивает его на два треугольника,
    исходному.
  2. В две его
    высоты отсекают от него треугольники.

Срединный перпендикуляр

Прямую, проходящую через середину отрезка перпендикулярно к нему, называют
серединным перпендикуляром к отрезку.

Свойства серединных перпендикуляров треугольника

  1. Каждая точка серединного перпендикуляра к отрезку равноудалена от концов
    этого отрезка. Верно и обратное утверждение: каждая точка, равноудаленная
    от концов отрезка, лежит на серединном перпендикуляре к нему.
  2. Точка пересечения серединных перпендикуляров, проведенных к сторонам
    треугольника, является центром .

Средняя линия

Средней
линией треугольника
называется отрезок, соединяющий середины двух его
сторон.

Доказательства свойств

Первое свойство

Доказать, что медианы в прямоугольном треугольнике пересекаются в одной точке и делятся в пропорции 2:1, считая от вершины.

Доказательство:

  1. Рассмотрим прямоугольный треугольник ABC. Проведем две медианы AE и BD, которые пересекаются в точке X (рис. 2).

    Рисунок 2

  2. Середины отрезков AX и BX обозначим, соответственно, буквами F и G (рисунок 3).

    Рисунок 3

  3. Соединим между собой точки (D, F, G и E) и получим четырёхугольник DFGE (рис. 4).

    Рисунок 4

  4. Сторона DE этого четырёхугольника будет средней линией треугольника ABC. Согласно определению: отрезок, соединяющий середины двух сторон треугольника, является его средней линией. При этом по свойству средняя линия параллельна не пересекающейся с ней стороне и равна половине этой стороны, то есть.
    DE || AB и DE = AB / 2.
  5. Аналогично сторона FG треугольника AXB будет его средней линией.
    FG || AB и FG = AB / 2
  6. Отсюда следует, что отрезки DE и FG являются параллельными и равными. Следовательно, четырехугольник DFGE – параллелограмм (по признаку параллелограмма).
  7. Так как диагонали параллелограмма в точке пересечения делятся пополам, то
    FX=XE, GX=XD

    Рисунок 5

  8. Так как AF = FX (по построению), то и AF = FX = XE, аналогично DX = XG = GB.
  9. Получается, что точка X делит обе медианы AE и BD в соотношении 2 к 1 считая от вершины треугольника.
  10. Аналогично, мы сможем доказать, что точка пересечения 3-ей медианы, проведенной из прямого угла к гипотенузе, с медианой AE (или BD) будет делить ее в соотношении 2 к 1, считая от вершины. То есть наша 3-я медиана также пройдет через точку X. Отсюда следует, что все 3 наши медианы пересекаются в одной точке.

Что и требовалось доказать.

Второе свойство

Доказать, что медиана, проведённая с вершины прямого угла к гипотенузе, равна половине гипотенузы.

Доказательство:

  1. Чтобы доказать это свойство рассмотрим прямоугольный треугольник ABC и проведём медиану к гипотенузе. Точку ее пересечения с гипотенузой обозначим буквой D (рис. 6).

    Рисунок 6

  2. Отразим симметрично наш треугольник ABC относительно отрезка AB (рисунок 7). В результате получим четырёхугольник AEBC, в котором AD=DB (поскольку CD медиана к стороне AB) и CD=DE (по построению). То есть диагонали четырехугольника AEBC пересекаются и точкой пересечения делятся пополам. Отсюда следует, что AEBC является параллелограммом (по признаку параллелограмма).

    Рисунок 7

  3. Один из признаков прямоугольника говорит о том, что параллелограмм является прямоугольником, если хотя бы один из его углов прямой. Поскольку ∠ACB прямой (по построению), то AEBC — прямоугольник.
  4. Поскольку диагонали прямоугольника равны и в точке пересечения делятся пополам (свойство прямоугольника), то AB = CE и AD = DB = CD = DE.

    Рисунок 8

  5. Так как AB = AD + DB, AD = BD и СD = AD = BD, то получается, что медиана AD, проведенная к гипотенузе AB равна половине ее длины.

Что и требовалось доказать.

Третье свойство

Доказать, что медиана, проведённая к гипотенузе прямоугольного треугольника, является радиусом описанной окружности.

Доказательство:

  1. Опишем вокруг прямоугольного треугольника ABC окружность.

    Рисунок 9

  2. Поскольку точка C уже лежит на окружности, то для того, чтобы доказать, что медиана CM является радиусом, нам надо доказать, что точка M – центр описанной окружности (т.е. равноудалена от нее).
  3. Так как медиана делит отрезок пополам, а медиана проведенная к гипотенузе равна ее половине (согласно доказанному выше свойству), то точка M будет равноудалена от всех вершин треугольника, которые в свою очередь касаются окружности (рисунок 8).
  4. Отсюда следует, что окружность, описанная вокруг прямоугольного треугольника ABC будет иметь центр на середине гипотенузы (в точке M), а медиана CM будет радиусом описанной окружности.

Что и требовалось доказать.

Скорее всего, Вам будет интересно:

  • Свойства вписанной в треугольник окружности
  • Средняя линия трапеции: чему равна, свойства, доказательство теоремы
  • Свойства прямоугольной трапеции
  • Третий признак равенства треугольников формулировка и доказательство
  • Первый признак равенства треугольников: формулировка и доказательство (7 класс)
  • Таблица прямых и обратных тригонометрических функций, онлайн калькулятор
  • Состав служебного программного обеспечения
  • Как найти область определения функции онлайн
  • Закон Кулона: формулировка, определение, формула
  • Основные положения молекулярно-кинетической теории (МКТ), формулы МКТ

Признаки равнобедренного треугольника

Признак 1. Если в треугольнике две стороны равны, то треугольник является равнобедренным.

Признак 1 следует из определения 1.

Признак 2. Если в треугольнике два угла равны, то треугольник является равнобедренным.

Доказательство признака 2 смотрите в статье Соотношения между сторонами и углами треугольника (Следствие 2. Признак равнобедренного треугольника).

Признак 3. Если в треугольнике высота проведенная к одной стороне совпадает с медианой проведенной к этой же стороне, то треугольник является равнобедренным.

Доказательство. Пусть в треугольнике \( \small ABC \) \( \small AH \) является высотой и медианой (Рис.4). Тогда \( \small \angle 3=\angle4=90°, \) \( \small CH=HB. \) Треугольники \( \small AHC \) и \( \small AHB \) равны по двум сторонам и углу между ними (): \( \small AH \) − общая сторона, \( \small CH=HB, \) \( \small \angle 3=\angle4. \) Следовательно \( \small AB=AC. \)

Признак 4. Если в треугольнике высота проведенная к одной стороне совпадает с биссектрисой проведенной к этой же стороне, то треугольник является равнобедренным.

Доказательство. Пусть в треугольнике \( \small ABC \) \( \small AH \) является высотой и биссектрисой (Рис.4). Тогда \( \small \angle 3=\angle4=90°, \) \( \small \angle 1=\angle2. \) Треугольники \( \small AHC \) и \( \small AHB \) равны по стороне и прилежащим двум углам (): \( \small AH \) − общая сторона, \( \small \angle 1=\angle 2, \) \( \small \angle 3=\angle4. \) Следовательно \( \small AB=AC. \)

Признак 5. Если в треугольнике биссектриса проведенная к одной стороне совпадает с медианой проведенной к этой же стороне, то треугольник является равнобедренным.

Доказательство (Вариант 1). Пусть в треугольнике \( \small ABC \) \( \small AH \) является биссектрисой и медианой (Рис.5). Тогда

Применим теорему синусов для треугольника \( \small AHC \):

Применим теорему синусов для треугольника \( \small AHB \):

тогда, из (5), (6), (7) получим:

Следовательно \( \small \sin \angle C= \sin \angle B. \) Поскольку сумма всех углов треугольника равна 180°, то нам интересует синус углов от 0 до 180°. Учитывая это получим, что синусы углов равны в двух случаях: 1) \( \small \angle C= \angle B, \) 2) \( \small \angle C= 180° — \angle B. \) Поскольку сумма двух углов треугольника меньше 180°: \( \small \angle C + \angle B< 180° \) второй вариант исключается. Т.е. \( \small \angle C= \angle B \) и по признаку 2 треугольник является равнобедренным.

Доказательство (Вариант 2). Пусть в треугольнике \( \small ABC \) \( \small AH \) является биссектрисой и медианой, т.е. \( \small \angle 1=\angle 2, \) \( \small CH=HB \) (Рис.6). На луче \( \small AH \) отложим отрезок \( \small HD \) так, чтобы \( \small AH=HD. \) Соединим точки \( \small C \) и \( \small D. \)

Треугольники \( \small AHB \) и \( \small DHC \) равны по двум сторонам и углу между ними (). Действительно: \( \small AH=HD, \) \( \small CH=HB, \) \( \small \angle 4=\angle 5 \) (углы 4 и 5 вертикальные). Тогда \( \small AB=CD, \) \( \small \angle 6=\angle 2. \) Отсюда \( \small \angle 6=\angle 1. \) Получили, что треугольник \( \small CAD \) равнобедренный (признак 2). Тогда \( \small AC=CD. \) Но \( \small AB=CD \) и, следовательно \( \small AB=AC. \) Получили, что треугольник \( \small ABC \) равнобедренный.

Свойства медианы в прямоугольном треугольнике с доказательствами

В этой статье мы рассмотрим свойства медианы в прямоугольном треугольнике, а также их доказательства.

Медиана — это отрезок, соединяющий вершину треугольника с серединой противолежащей стороны. Для прямоугольного треугольника это будут медианы, проведённые с острого угла к серединам катетов или с прямого к центру гипотенузы (рис. 1).

Рисунок 1

Свойства медианы в прямоугольном треугольнике

  1. Медианы в прямоугольном треугольнике пересекаются в одной точке, а точка пересечения делит их в соотношении два к одному считая от вершины, из которой проведена медиана.
  2. Медиана, проведённая из вершины прямого угла к гипотенузе, равна половине гипотенузы.
  3. Медиана, проведённая к гипотенузе прямоугольного треугольника, является радиусом описанной окружности.

Первое свойство

Доказать, что медианы в прямоугольном треугольнике пересекаются в одной точке и делятся в пропорции 2:1, считая от вершины.

Доказательство:

  1. Рассмотрим прямоугольный треугольник ABC. Проведем две медианы AE и BD, которые пересекаются в точке X (рис. 2).

    Рисунок 2

  2. Середины отрезков AX и BX обозначим, соответственно, буквами F и G (рисунок 3).

    Рисунок 3

  3. Соединим между собой точки (D, F, G и E) и получим четырёхугольник DFGE (рис. 4).

    Рисунок 4

  4. Сторона DE этого четырёхугольника будет средней линией треугольника ABC. Согласно определению: отрезок, соединяющий середины двух сторон треугольника, является его средней линией. При этом по свойству средняя линия параллельна не пересекающейся с ней стороне и равна половине этой стороны, то есть. DE || AB и DE = AB / 2.
  5. Аналогично сторона FG треугольника AXB будет его средней линией. FG || AB и FG = AB / 2
  6. Отсюда следует, что отрезки DE и FG являются параллельными и равными. Следовательно, четырехугольник DFGE – параллелограмм (по признаку параллелограмма).
  7. Так как диагонали параллелограмма в точке пересечения делятся пополам, то FX=XE, GX=XD

    Рисунок 5

  8. Так как AF = FX (по построению), то и AF = FX = XE, аналогично DX = XG = GB.
  9. Получается, что точка X делит обе медианы AE и BD в соотношении 2 к 1 считая от вершины треугольника.
  10. Аналогично, мы сможем доказать, что точка пересечения 3-ей медианы, проведенной из прямого угла к гипотенузе, с медианой AE (или BD) будет делить ее в соотношении 2 к 1, считая от вершины. То есть наша 3-я медиана также пройдет через точку X. Отсюда следует, что все 3 наши медианы пересекаются в одной точке.

Что и требовалось доказать.

Третье свойство

Доказать, что медиана, проведённая к гипотенузе прямоугольного треугольника, является радиусом описанной окружности.

Виды треугольников

Треугольник называется равнобедренным,
если у него две сторны равны. Эти равные стороны называются боковыми
сторонами,
а третья сторона называется основанием треугольника.

Треугольник, у которого все сторны равны, называется равносторонним
или правильным.

Треугольник
называется прямоугольным, если у него есть прямой угол, то есть
угол в 90°. Сторона прямоугольного треугольника, противолежащая прямому
углу, называется гипотенузой, две другие стороны называются катетами.

Треугольник называется остроугольным,
если все три его угла — острые, то есть меньше 90°.

Треугольник называется тупоугольным, если один из его углов —
тупой, то есть больше 90°.

Формулы и соотношения

Признаки равенства треугольников

Два треугольника равны, если у них соответственно равны:

  • две стороны и угол между ними;
  • два угла и прилежащая к ним сторона;
  • три стороны.

Два равны, если
у них соответственно равны:

  • и острый угол;
  • и противолежащий угол;
  • и прилежащий угол;
  • два ;
  • и .

Подобие треугольников

Два треугольника подобны, если выполняется
одно из следующих условий, называемых признаками подобия:

  • два угла одного треугольника равны двум углам другого треугольника;
  • две стороны одного треугольника пропорциональны двум сторонам другого
    треугольника, а углы, образованные этими сторонами, равны;
  • три стороны одного треугольника соответственно пропорциональны трем
    сторонам другого треугольника.

В подобных треугольниках соответствующие линии (,
, и
т. п.) пропорциональны.

Теорема синусов

Стороны треугольника пропорциональны синусам противолежащих углов, причем
коэффициент пропорциональности равен
:

Теорема косинусов

Квадрат стороны треугольника равен сумме квадратов двух других сторон
минус удвоенное произведение этих сторон на косинус угла между ними:

a2= b2+ c2
2bc cos

Формулы площади треугольника

  1. Произвольный треугольник

a, b, c — стороны;  —
угол между сторонами a и b;—
полупериметр; R — радиус описанной окружности; r — радиус
вписанной окружности; S — площадь; ha
высота, проведенная к стороне a.

S
= aha

S = ab
sin

S = pr

Прямоугольный треугольник

a, b — катеты; c — гипотенуза; hcвысота,
проведенная к стороне c.

S = ab

S = chc

Равносторонний треугольник

Треугольник как основа стереометрии

Помимо этого, в 10 и 11 классах в учебную программу добавляется так называемая стереометрия. Данный раздел геометрии отвечает за различные предметы в трехмерном пространстве. Если в классической планиметрии основой для всего является точка, то в стереометрии на первый план выходит ребро. Именно с его помощью и происходит построение большинства геометрических объектов в стереометрии. Но есть 1 тема, которая объединяет 2 разные раздела геометрии — треугольник и все, что с ним связано. Большинство объектов в стереометрии состоят из множества небольших плоскостей с тремя или четырьмя углами, которые и являются основным объектом построения на ряду с ребром. Соответственно — для нахождения площади объемных шестиугольников, в первую очередь, необходимо знать все необходимые формулы и термины. Так, всего из одной вершины этой сложной геометрической фигуры можно прочертить сразу 4 различных прямых:

  • Биссектрису;
  • Перпендикуляр;
  • Высоту;
  • Медиану.

И если первая — просто делит угол пополам, а срединный перпендикуляр и высота зачастую являются одним понятием, медиана имеет множество своих индивидуальных и необычных признаков.