Теорема пифагора

Содержание

Египетский треугольник

Для того чтобы нынешнее поколение узнало геометрию в том виде, в котором ее преподают в школе сейчас, она развивалась несколько веков. Основополагающим моментом считается теорема Пифагора. Стороны прямоугольного известна на весь мир) составляют 3, 4, 5.

Мало кто не знаком с фразой «Пифагоровы штаны во все стороны равны». Однако на самом деле теорема звучит так: c 2 (квадрат гипотенузы) = a 2 +b 2 (сумма квадратов катетов).

Среди математиков треугольник со сторонами 3, 4, 5 (см, м и т. д.) называется «египетским». Интересно то, что которая вписана в фигуру, равняется единице. Название возникло примерно в V столетии до н.э., когда философы Греции ездили в Египет.

При построении пирамид архитекторы и землемеры пользовались соотношением 3:4:5. Такие сооружения получались пропорциональными, приятными на вид и просторными, а также редко рушились.

Для того чтобы построить прямой угол, строители использовали веревку, на которой было завязано 12 узлов. В таком случае вероятность построения именно прямоугольного треугольника повышалась до 95%.

Как найти гипотенузу: 4 способа поиска ответа

После изучения темы про прямоугольные треугольники ученики часто выбрасывают из головы всю информацию о них. В том числе и то, как найти гипотенузу, не говоря уже о том, что это такое.

И напрасно. Потому что в дальнейшем диагональ прямоугольника оказывается этой самой гипотенузой, и ее нужно найти. Или диаметр окружности совпадает с самой большой стороной треугольника, один из углов которого прямой. И найти ее без этого знания невозможно.

Существует несколько вариантов того, как найти гипотенузу треугольника. Выбор метода зависит от исходного набора данных в условии задачи величин.

Как найти равные катеты, при известной гипотенузе

В этом варианте решение задачи основывается на использовании теоремы Пифагора. Ее применяют к прямоугольным треугольникам и основной ее вариант звучит, как: «Квадрат гипотенузы равен сумме квадратов катетов». Так, как катеты у нас равны, то мы можем обозначать оба катета одним и тем же сиволом: a=b, значит — a=a.

  1. Подставляем наши условные обозначения в теорему (с учетом вышеизложенного): c^2=a^2+a^2,
  2. Далее максимально упрощаем формулу: с^2=2*(a^2) — группируем, с=√2*а — подносим обе части уравнения к квадратному кореню, a=c/√2 — выносим искомое.
  3. Подставлем данное значение гипотенузы и получаем решение: a=x/√2

Историческая справка

Теорема Пифагора — одна из основополагающих теорем евклидовой геометрии, устанавливающая
соотношение между сторонами прямоугольного треугольника.

В древнекитайской книге «Чжоу би суань цзин» говорится о пифагоровом треугольнике со сторонами 3, 4 и 5. Крупнейший немецкий
историк математики Мориц Кантор (1829 — 1920) считает, что равенство $3^{2}+4^{2}=5^{2}$ было известно уже египтянам ещё около
2300 г. до н.э. По мнению ученого, строители строили тогда прямые углы при помощи прямоугольных треугольников со сторонами 3, 4 и 5.
Несколько больше известно о теореме Пифагора у вавилонян. В одном тексте приводится приближённое вычисление гипотенузы равнобедренного
прямоугольного треугольника
.

На данный момент в научной литературе зафиксировано 367 доказательств данной теоремы. Вероятно, теорема Пифагора является
единственной теоремой со столь внушительным числом доказательств. Такое многообразие можно объяснить лишь фундаментальным
значением теоремы для геометрии.

Виды швов

Сварочный шов образуется в месте стыка двух металлических заготовок в результате расплава металла под воздействием высокой температуры. В зависимости от способа соединения заготовок сварочный шов может быть стыковым или угловым. Соединение деталей осуществляется в одной плоскости. Они расположены торцевой частью стык-в-стык по отношению друг к другу. Во втором случае детали располагаются под углом одна относительно другой.

Помимо уже перечисленных способов соединения может быть еще тавровое. Это случай, когда элементы в месте соединения образуют букву Т: один торцевой частью примыкает к фронтальной стороне иного. При таком способе соединения угол может быть не только прямым, но и острым (тупым) в любой плоскости – по горизонтали, вертикали или смещенный. Шов при любом расположении заготовок формируется между бортами примыканий.

Способ размещения заготовок внахлест лучше всего подходит для сваривания листовых материалов. Наиболее взвешенный вариант для тонких листов железа. В этом случае кратно уменьшается вероятность прожига металла. Свариваться металлы могут с одной или же с обеих сторон.

Каждый из выше рассмотренных способов соединения металлических заготовок имеет очень важную характеристику – катет сварного шва. Это – кратчайшее расстояние от одной детали до углового соединения второй. Другими словами, это сторона равнобедренного треугольника наибольшего размера, который можно вписать в поперечный разрез двух сваренных между собой заготовок. Это очень важная характеристика, которая информирует о качестве сварного шва.

Данный критерий оказывает прямое влияние на такие показатели:

  • прочность соединения;
  • результат расчета при соединении изделий с разной толщиной;
  • вероятность деформации кромок деталей из-за нагрева.

Теорема Пифагора. Доказательство

Теорема 1 (Теорема Пифагора). В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов.

Доказательство (метод площадей). Пусть задан прямоугольный треугольник с катетами a и b и гипотенузой c (Рис.1). Докажем, что \( \small c^2=a^2+b^2. \)

Построим квадрат со стороной a+b из четырех таких прямоугольных треугольников (Рис.2). Тогда внутренний белый четырехугольник будет квадратом со стороной c.

Действительно. В прямоугольных треугольниках (Рис.2) \( \small \angle 1 +\angle 2=90° \) Следовательно, каждый угол квадрата со стороной c равен \( \small \angle 3=180&deg-(\angle 1 +\angle 2)=180°-90°=90°.\)

Далее, площадь квадрата со стороной a+b равна:

Площадь квадрата со стороной c равна:

Площадь каждого прямоугольного треугольника на рисунке 2 равна:

Площадь квадрата со стороной a+b равна сумме площади квадрата со стороной c и четырех площадей прямоугольных треугольников c катетами a и b:

Подставляя (1)-(3) в (4), получим:

Доказательство (через подобные треугольники). Пусть задан прямоугольный треугольник ABC с катетами a и b и гипотенузой c (Рис.3). Докажем, что \( \small c^2=a^2+b^2. \) Проведем высоту CH. Прямоугольные треугольники ACB и CHB подобны по двум углам: \( \small \angle ACB= \angle CHB=90°, \ \angle B -\)общий (см. стратью на странице Подобные треугольники. Признаки подобия треугольников).

Тогда

или

Прямоугольные треугольники ACB и AHC подобны по двум углам: \( \small \angle ACB= \angle AHC=90°, \ \angle A -\)общий.

или

Сложив уравнения (5) и (6), получим

Доказательство (Евклид). Пусть задан прямоугольный треугольник ABC с катетами a, b и гипотенузой c (Рис.4). Докажем, что \( \small c^2=a^2+b^2. \)

Достаточно доказать, что площадь квадрата ABFD равна сумме площадей ACLK и BCGJ:

Площадь треугольника ACD по двум сторонам и углу между ними равен:

Учитывая, что \( \small \sin \angle ACH=\sin (90°-\alpha)=\sin \alpha, \) применим теорему синусов для прямоугольного треугольника ACH:

или

Подставляя (8) в (7), получим:

Применим теорему синусов для прямоугольного треугольника ABC:

или

Подставляя (10) в (7), получим:

Учитывая, что \( \small AD=AB, \) получим:

Из (9) и (12), имеем:

Аналогично можно показать, что

Сложив (13) и (14), получим:

или

Как найти катеты, при известной гипотенузе и угле

  • гипотенуза (обозначим ее буквой «c») равна х см: c=x;
  • угол β равный q: β=q;

Для решения этой задачи необходимо использовать тригонометрические функции. Найболее популярны две из них:

  • функция синуса — синус искомого угла равен отношению противолежащего катета к гипотенузе;
  • функция косинуса — косинус искомого угла равен отношению прилежащего катета к гипотенузе;

Вы можете использовать любую. Я наведу пример с использованием первой. Пусть катеты у нас обозначаються символами «a» (прилежащий к углу) и «b» (противолежащий к углу). Соответственно наш угол лежит между катетом «a» и гипотенузой.

  1. Подставляем выбранные условные обозначения в формулу:sinβ = b/c
  2. Выводим катет:b=c*sinβ
  3. Подставляем наши данный и имеем один катет.b=c*sinq

Второй катет можно найти воспользовавшись второй тригонометрической функцией, или же перейти к третьему варианту.

Признаки равенства фигур

Острый угол в прямоугольном треугольнике и большая сторона, которые равны тем же элементам во втором треугольнике, — бесспорный признак равенства фигур

Беря во внимание сумму углов, легко доказать, что вторые острые углы также равны. Таким образом, треугольники одинаковы по второму признаку.
При наложении двух фигур друг на друга повернем их таким образом, чтобы они, совместившись, стали одним равнобедренным треугольником

По его свойству стороны, а точнее, гипотенузы, равны, так же как и углы при основании, а значит, эти фигуры одинаковые.

По первому признаку очень просто доказать то, что треугольники действительно равны, главное, чтобы две меньшие стороны (т. е. катеты) были равными между собой.

Треугольники будут одинаковыми по II признаку, суть которого заключается в равенстве катета и острого угла.

Доказательство теоремы Пифагора

Пусть треугольник $A B C$ — прямоугольный треугольник с
прямым углом $C$ (рис. 2).

Проведём высоту из вершины $C$ на гипотенузу $A B$, основание высоты обозначим как $H$ .

Прямоугольный треугольник $A C H$ подобен треугольнику $A B C$ по двум углам ( $\angle A C B=\angle C H A=90^{\circ}$,
$\angle A$ — общий). Аналогично, треугольник $C B H$ подобен $A B C$ .

Введя обозначения

$$B C=a, A C=b, A B=c$$

из подобия треугольников получаем, что

$$\frac{a}{c}=\frac{H B}{a}, \frac{b}{c}=\frac{A H}{b}$$

Отсюда имеем, что

$$a^{2}=c \cdot H B, b^{2}=c \cdot A H$$

Сложив полученные равенства, получаем

$$a^{2}+b^{2}=c \cdot H B+c \cdot A H$$

$$a^{2}+b^{2}=c \cdot(H B+A H)$$

$$a^{2}+b^{2}=c \cdot A B$$

$$a^{2}+b^{2}=c \cdot c$$

$$a^{2}+b^{2}=c^{2}$$

Что и требовалось доказать.

Теорема Пифагора — краткая история

Соотношение между сторонами прямоугольного треугольника в том или ином виде было известно многим древним цивилизациям (египетской, шумерской и др.), но первая известная формулировка принадлежит греческому философу и математику Пифагору в V в. до н.э. Об этом известно из труда «Начала», который написал Евклид приблизительно в 300 г. до н. э.

Теорема Пифагора используется для доказательства многих других теорем геометрии. Математиками разработано несколько обобщений, например, для произвольных треугольников, для многомерных пространств. При этом, теорема Пифагора выполняется только в евклидовых геометриях, в иных случаях она не действует.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут

Примеры решения задач

Пример

Задание. Задан прямоугольный треугольник $A B C$, катеты которого равны 6 см и 8 см.
Найти гипотенузу этого треугольника.

Решение. Согласно условию катеты $a=6$ см, $b=8$ см. Тогда, согласно теореме
Пифагора, квадрат гипотенузы

$c^{2}=a^{2}+b^{2}=6^{2}+8^{2}=36+64=100$

Отсюда получаем, что искомая гипотенуза

$c=\sqrt{100}=10$ (см)

Ответ. 10 см

Слишком сложно?

Теорема Пифагора не по зубам? Тебе ответит эксперт через 10 минут!

Пример

Задание. Найти
площадь прямоугольного треугольника, если известно, что один
из его катетов на 5 см больше другого, а гипотенуза равна 25 см.

Решение. Пусть
$x$ см — длина меньшего катета, тогда $(x+5)$ см — длина большего. Тогда согласно теореме Пифагора имеем:

$$x^{2}+(x+5)^{2}=25^{2}$$

Раскрываем скобки, сводим подобные и решаем полученное квадратное уравнение:

$x^{2}+5 x-300=0$

Согласно теореме Виета, получаем, что

$x_{1}=15$ (см)  ,  $x_{2}=-20$ (см)

Значение $x_{2}$ не удовлетворяет условию задачи, а значит, меньший катет равен 15 см, а больший — 20 см.

Площадь прямоугольного треугольника равна полупроизведению длин его катетов, то есть

$$S=\frac{15 \cdot 20}{2}=15 \cdot 10=150\left(\mathrm{см}^{2}\right)$$

Ответ. $S=150\left(\mathrm{см}^{2}\right)$

Пример задачи №2

Условие: вычислить диагональ, проведенную в прямоугольнике с меньшей стороной, равной 41. Если известно, что она делит угол на такие, которые соотносятся как 2 к 1.

В этой задаче диагональ прямоугольника является наибольшей стороной в треугольнике с углом 90º. Поэтому все сводится к тому, как найти гипотенузу.

В задаче идет речь об углах. Это значит, что нужно будет пользоваться одной из формул, в которых присутствуют тригонометрические функции. А сначала требуется определить величину одного из острых углов.

Пусть меньший из углов, о которых идет речь в условии, будет обозначен α. Тогда прямой угол, который делится диагональю, будет равен 3α. Математическая запись этого выглядит так:

Из этого уравнения просто определить α. Он будет равен 30º. Причем он будет лежать напротив меньшей стороны прямоугольника. Поэтому потребуется формула, описанная в способе №3.

Гипотенуза равна отношению катета к синусу противолежащего угла, то есть:

Примеры решения задач

Задача 1

В прямоугольном треугольнике АВС, катет ВС = 36 см, гипотенуза АВ = 85 см. Необходимо найти катет АС.

Решение

По теореме Пифагора ВС2+АС2=АВ2, значит

\(АС\;=\;\sqrt{АВ^2\;-\;АС^2}\)

Для нахождения ответа подставим в формулу исходные значения:

\(АС\;=\;\sqrt{85^2\;-\;36^2}\;=\;\sqrt{7225\;-\;1296\;}={\;\sqrt{5929}\;=\;77\;}\)

Задача 2

Является ли прямоугольным треугольник со сторонами 46, 56 и 76 см.

Решение. Если указанный треугольник прямоугольный, то две меньшие стороны в 46 и 56 см – это катеты, а большая, в 76 см – гипотенуза. По теореме Пифагора сумма квадратов катетов должна быть равна квадрату гипотенузы. Проверим это:

  • 46²+56²= 5252;
  • 76²= 5776;
  • 5252 ≠ 5776, значит, указанный треугольник не является прямоугольным.

Задача 3.

Диагонали ромба ABCD равны 24 и 18 см. Чему равна сторона ромба.

Решение

Диагонали ромба AC и BD пересекаются под прямым углом и точкой пересечения O делятся пополам. В этом виде задача сводится к поиску гипотенузы АВ в прямоугольном треугольнике ABO с катетами АО=24/2=12 см и ВО=18/2=9 см.

По теореме Пифагора:

АО2+BO2=AB2, значит

Как найти гипотенузу через угол?

Еще одним способом, который поможет узнать, чему равна гипотенуза в прямоугольном треугольнике, является вычисление через заданный угол. Для этого нам потребуется вывести величину через формулу синуса. Допустим, нам известна величина катета (А) и значение противолежащего угла (α). Тогда все решение заключается в одной формуле: С=А/sin(α).

Например, если длина катета 40 см, а угол составляет 45°, тогда длину гипотенузы можно вывести следующим образом:

40/sin(45°) = 40/0,71 = 56,33.

Определить искомую величину можно также через косинус заданного угла. Допустим, нам известно значение одного катета (В) и острого прилежащего угла (α). Тогда для решения задачи понадобится одна формула: С=В/ cos(α).

К примеру, если длина катета имеет значение 50 см, а угол составляет 45°, тогда гипотенузу можно вычислить следующим образом:

50/cos(45°) = 50/0,71 = 80,42.

Таким образом, мы рассмотрели основные способы как узнать гипотенузу в треугольнике

В ходе решения задания важно сконцентрировать внимание на имеющихся данных, тогда найти неизвестную величину будет достаточно просто. Необходимо знать всего пару формул и процесс решения задач станет простым и приятным

Онлайн калькулятор

Чтобы вычислить длины сторон прямоугольного треугольника вам нужно знать следующие параметры (либо-либо):

  • для гипотенузы (с):
    • длины катетов a и b
    • длину катета (a или b) и прилежащий к нему острый угол (β или α, соответственно)
    • длину катета (a или b) и противолежащий к нему острый угол (α или β, соответственно)
  • для катета:
    • длину гипотенузы (с) и длину одного из катетов
    • длину гипотенузы (с) и прилежащий к искомому катету (a или b) острый угол (β или α, соответственно)
    • длину гипотенузы (с) и противолежащий к искомому катету (a или b) острый угол (α или β, соответственно)
    • длину одного из катетов (a или b) и прилежащий к нему острый угол (β или α, соответственно)
    • длину одного из катетов (a или b) и противолежащий к нему острый угол (α или β, соответственно)

Введите их в соответствующие поля и получите результат.

Найти гипотенузу (c)

Найти гипотенузу по двум катетам

Чему равна гипотенуза (сторона с) если известны оба катета (стороны a и b)?

следовательно: c = √ a² + b²

Пример

Для примера посчитаем чему равна гипотенуза прямоугольного треугольника если катет a = 3 см, а катет b = 4 см:

c = √ 3² + 4² = √ 9 + 16 = √ 25 = 5 см

Найти гипотенузу по катету и прилежащему к нему острому углу

Чему равна гипотенуза (сторона с) если известны один из катетов (a или b) и прилежащий к нему угол?

Пример

Для примера посчитаем чему равна гипотенуза прямоугольного треугольника если катет a = 2 см, а прилежащий к нему ∠β = 60°:

c = 2 / cos(60) = 2 / 0.5 = 4 см

Найти гипотенузу по катету и противолежащему к нему острому углу

Чему равна гипотенуза (сторона с) если известны один из катетов (a или b) и противолежащий к нему угол?

Пример

Для примера посчитаем чему равна гипотенуза прямоугольного треугольника если катет a = 2 см, а противолежащий к нему ∠α = 30°:

c = 2 / sin(30) = 2 / 0.5 = 4 см

Найти гипотенузу прямоугольного треугольника только по двум острым углам невозможно.

Найти катет

Найти катет по гипотенузе и катету

Чему равен один из катетов прямоугольного треугольника если известны гипотенуза и второй катет?

Пример

Для примера посчитаем чему равен катет a прямоугольного треугольника если гипотенуза c = 5 см, а катет b = 4 см:

a = √ 5² — 4² = √ 25 — 16 = √ 9 = 3 см

Найти катет по гипотенузе и прилежащему к нему острому углу

Чему равен один из катетов прямоугольного треугольника если известны гипотенуза и прилежащий к искомому катету острый угол?

Пример

Для примера посчитаем чему равен катет b прямоугольного треугольника если гипотенуза c = 5 см, а ∠α = 60°:

b = 5 ⋅ cos(60) = 5 ⋅ 0.5 = 2.5 см

Найти катет по гипотенузе и противолежащему к нему острому углу

Чему равен один из катетов прямоугольного треугольника если известны гипотенуза и противолежащий к искомому катету острый угол?

Пример

Для примера посчитаем чему равен катет a прямоугольного треугольника если гипотенуза c = 4 см, а ∠α = 30°:

a = 4 ⋅ sin(30) = 4 ⋅ 0.5 = 2 см

Найти катет по второму катету и прилежащему к нему острому углу

Чему равен один из катетов прямоугольного треугольника если известен другой катет и прилежащий к нему острый угол?

Пример

Для примера посчитаем чему равен катет b прямоугольного треугольника если катет a = 2 см, а ∠β = 45°:

b = 2 ⋅ tg(45) = 2 ⋅ 1 = 2 см

Найти катет по второму катету и противолежащему к нему острому углу

Чему равен один из катетов прямоугольного треугольника если известен другой катет и противолежащий к нему острый угол?

Пример

Для примера посчитаем чему равен катет a прямоугольного треугольника если катет b = 3 см, а ∠β = 35°:

http://razuznai.ru/kak_najti_katety_esli_izvestna_gipotenuza.htmlhttp://www.syl.ru/article/182058/mod_kak-nayti-gipotenuzu-sposoba-poiska-otvetahttp://poschitat.online/storony-pryamougolnogo-treugolnika

Типовые примеры

Для решения задач на нахождение катета не нужно обладать какими-то особенными знаниями. Нужно просто внимательно проанализировать условие. Например, пусть известно, что в прямоугольнике один катет длиннее другого на пять сантиметров. При этом площадь фигуры равняется 84 сантиметрам в квадрате. Необходимо определить длины сторон и периметр.

Так как в условии дана площадь, то при решении необходимо отталкиваться от неё. Известно, что площадь прямоугольного треугольника находится по формуле: S = AC*CB/2. Это выражение является частным случаем общей формулы для нахождения площади любого треугольника, где: AC — это высота, а CB — основание. Если принять, что AC равно X, то, согласно условию, длина CB будет составлять x+5.

Исходя из этого, площадь треугольника будет равна: S = (x*(x+5))/2. Подставив вместо S заданное значение, можно получить квадратное уравнение: x2 + 5x — 84 = 0. Решать его лучше методом детерминанта. Корнями уравнения будут -12 и 7. Так как -12 не удовлетворяет условию задачи, то верным ответом будет семь.

Длина второго катета равняется семи сантиметрам. Первого: AC = 7−5 = 2 см. Зная оба катета, по теореме Пифагора можно найти гипотенузу: c = (22 + 72)½ = (4+49)½ = 531/2 = 7,3 см. Найдя длины всех сторон, можно без усилий найти периметр обыкновенным сложением: P = 2+7+7,3 = 16,3 см. Задача решена.

Довольно интересные, но в то же время простые задачи на нахождение сторон и углов при известной длине гипотенузы и значения разворота одной из вершин. Пусть имеется прямоугольный треугольник, у которого гипотенуза BC равняется пяти сантиметрам, а угол между ней и катетом составляет 60 градусов. Нужно определить все остальные стороны и углы.

Так как известна гипотенуза и острый угол, то, воспользовавшись тригонометрическими формулами, можно найти длины катетов: AC=BC*sin60 = 5*(3)½/2; AB=BC*cos60 = 5/2. Сумма всех углов в треугольнике равна 180 градусов, так как один из них прямой, а второй задан и составляет 60 градусов, то третий находится путём вычитания C = 180 — (90 + 60) = 30.

Как найти равные катеты, при известной гипотенузе

  • гипотенуза (обозначим ее буквой «c») равна х см: c=x;
  • первый катет (обозначим его буквой «a») равен второму катету ((обозначим его буквой «b»): a=b;

В этом варианте решение задачи основывается на использовании теоремы Пифагора. Ее применяют к прямоугольным треугольникам и основной ее вариант звучит, как: «Квадрат гипотенузы равен сумме квадратов катетов». Так, как катеты у нас равны, то мы можем обозначать оба катета одним и тем же сиволом: a=b, значит — a=a.

  1. Подставляем наши условные обозначения в теорему (с учетом вышеизложенного): c^2=a^2+a^2,
  2. Далее максимально упрощаем формулу: с^2=2*(a^2) — группируем, с=√2*а — подносим обе части уравнения к квадратному кореню, a=c/√2 — выносим искомое.
  3. Подставлем данное значение гипотенузы и получаем решение: a=x/√2

Теоремы, применяемые к прямоугольному треугольнику

Геометрия прямоугольного треугольника включает в себя использование таких теорем, как:

Зная один из катетов в прямоугольном треугольнике, можно найти второй катет и гипотенузу используя тригонометрические отношения – синус и тангенс известного угла. Так как отношение противолежащего углу катета к гипотенузе равно синусу этого угла, следовательно, чтобы найти гипотенузу нужно катет разделить на синус угла.
a/c=sin⁡α
c=a/sin⁡α

Второй катет можно найти из тангенса известного угла, как отношение известного катета к тангенсу.
a/b=tan⁡α
b=a/tan⁡α

Чтобы вычислить неизвестный угол в прямоугольном треугольнике нужно из 90 градусов вычесть величину угла α.
β=90°-α

Периметр и площадь прямоугольного треугольника через катет и противолежащий ему угол можно выразить, подставив полученные ранее выражения для второго катета и гипотенузы в формулы.
P=a+b+c=a+a/tan⁡α +a/sin⁡α =a tan⁡α sin⁡α+a sin⁡α+a tan⁡α
S=ab/2=a^2/(2 tan⁡α)

Вычислить высоту также можно через тригонометрические отношения, но уже во внутреннем прямоугольном треугольнике со стороной a, который она образует. Для этого нужно сторону a, как гипотенузу такого треугольника умножить на синус угла β или косинус α, так как согласно тригонометрическим тождествам они равнозначны. (рис. 79.2)
h=a cos⁡α

Медиана гипотенузы равна половине гипотенузы или известному катету a, деленному на два синуса α. Чтобы найти медианы катетов, приведем формулы к соответствующему виду для известной стороны и углы. (рис.79.3)
m_с=c/2=a/(2 sin⁡α)
m_b=√(2a^2+2c^2-b^2)/2=√(2a^2+2a^2+2b^2-b^2)/2=√(4a^2+b^2)/2=√(4a^2+a^2/tan^2⁡α)/2=(a√(4 tan^2⁡α+1))/(2 tan⁡α)
m_a=√(2c^2+2b^2-a^2)/2=√(2a^2+2b^2+2b^2-a^2)/2=√(4b^2+a^2)/2=√(4b^2+c^2-b^2)/2=√(3 a^2/tan^2⁡α +a^2/sin^2⁡α)/2=√((3a^2 sin^2⁡α+a^2 tan^2⁡α)/(tan^2⁡α sin^2⁡α))/2=(a√(3 sin^2⁡α+tan^2⁡α))/(2 tan⁡α sin⁡α)

Так как биссектрисой прямого угла в треугольнике является произведение двух сторон и корня из двух, деленное на сумму этих сторон, то заменив один из катетов на отношение известного катета к тангенсу, получаем следующее выражение. Аналогично, подставив отношение во вторую и третью формулы, можно вычислить биссектрисы углов α и β. (рис.79.4)
l_с=(a a/tan⁡α √2)/(a+a/tan⁡α)=(a^2 √2)/(a tan⁡α+a)=(a√2)/(tan⁡α+1)
l_a=√(bc(a+b+c)(b+c-a))/(b+c)=√(bc((b+c)^2-a^2))/(b+c)=√(bc(b^2+2bc+c^2-a^2))/(b+c)=√(bc(b^2+2bc+b^2))/(b+c)=√(bc(2b^2+2bc))/(b+c)=(b√(2c(b+c)))/(b+c)=(a/tan⁡α √(2c(a/tan⁡α +c)))/(a/tan⁡α +c)=(a√(2c(a/tan⁡α +c)))/(a+c tan⁡α)
l_b=√(ac(a+b+c)(a+c-b))/(a+c)=(a√(2c(a+c)))/(a+c)=(a√(2c(a+a/sin⁡α)))/(a+a/sin⁡α)=(a sin⁡α √(2c(a+a/sin⁡α)))/(a sin⁡α+a)

Средняя линия проходит параллельно одной из сторон треугольника, при этом образуя еще один подобный прямоугольный треугольник с такими же по величине углами, в котором все стороны в два раза меньше, чем у изначального. Исходя из этого, средние линии можно найти по следующим формулам, зная только катет и противолежащий ему угол. (рис.79.7)
M_a=a/2
M_b=b/2=a/(2 tan⁡α)
M_c=c/2=a/(2 sin⁡α)

Радиус вписанной окружности равен разности катетов и гипотенузы, деленной на два, а чтобы найти радиус описанной окружности, нужно разделить на два гипотенузу. Заменяем второй катет и гипотенузу на отношения катета a к синусу и тангенсу соответственно. (рис. 79.5, 79.6)
r=(a+b-c)/2=(a+a/tan⁡α -a/sin⁡α)/2=(a tan⁡α sin⁡α+a sin⁡α-a tan⁡α)/(2 tan⁡α sin⁡α)
R=c/2=a/2sin⁡α

Треугольник представляет собой геометрическое число, состоящее из трех сегментов, которые соединяют три точки, которые не лежат на одной линии. Точки, которые образуют треугольник, называются его точками, а сегменты бок о бок.

В зависимости от типа треугольника (прямоугольного, монохромного и т. Д.) Вы можете рассчитать сторону треугольника по-разному, в зависимости от исходных данных и условий проблемы.

Быстрая навигация для статьи

Чтобы вычислить стороны прямоугольного треугольника, используется теорема Пифагора, согласно которой квадрат гипотенузы равен сумме квадратов ноги.

Если мы отмечаем ноги буквами «a» и «b», а гипотенуза — «c», то страницы могут быть найдены со следующими формулами:

Если известны острые углы прямоугольного треугольника (a и b), его стороны могут быть найдены со следующими формулами:

Как найти катеты, при известной гипотенузе и угле

  • гипотенуза (обозначим ее буквой «c») равна х см: c=x;
  • угол β равный q: β=q;

размер катетов;

Для решения этой задачи необходимо использовать тригонометрические функции. Найболее популярны две из них:

  • функция синуса — синус искомого угла равен отношению противолежащего катета к гипотенузе;
  • функция косинуса — косинус искомого угла равен отношению прилежащего катета к гипотенузе;

Вы можете использовать любую. Я наведу пример с использованием первой. Пусть катеты у нас обозначаються символами «a» (прилежащий к углу) и «b» (противолежащий к углу). Соответственно наш угол лежит между катетом «a» и гипотенузой.

  1. Подставляем выбранные условные обозначения в формулу:sinβ = b/c
  2. Выводим катет:b=c*sinβ
  3. Подставляем наши данный и имеем один катет.b=c*sinq

Второй катет можно найти воспользовавшись второй тригонометрической функцией, или же перейти к третьему варианту.

Свойства геометрической фигуры

Перед тем, как найти гипотенузу треугольника, необходимо разобраться, какие особенности имеет данная фигура. Рассмотрим главные из них:

  1. В прямоугольном треугольнике оба острых угла в сумме будут равны 90º.
  2. Катет, лежащий против угла в 30º, будет равен ½ от величины гипотенузы.
  3. Если катет равен ½ от значения гипотенузы, тогда второй угол будет иметь такую же величину – 30º.

Найти гипотенузу в прямоугольном треугольнике можно несколькими способами. Самым простым решением является вычисление через катеты. Допустим, вам известны значения катетов сторон А и В. Тогда на выручку приходит теорема Пифагора, повествующая нам, что если поставить каждую величину катета в квадрат и просуммировать полученные данные, мы узнаем чему равна гипотенуза. Таким образом, нам необходимо просто извлечь значение квадратного корня:

Например, если катет А = 3 см, а катет В = 4 см, тогда вычисление будет иметь следующий вид:

Катеты прямоугольного треугольника

В прямоугольном треугольнике, зная катеты, можно найти гипотенузу через теорему Пифагора. Для этого нужно извлечь квадратный корень из суммы квадратов катетов. с=√(a^2+b^2 )

Площадь прямоугольного треугольника равна половине произведения катетов, а периметр – сумме катетов и гипотенузы. S=ab/2 P=a+b+c=a+b+√(a^2+b^2 )

Углы в прямоугольном треугольнике найти, зная катеты, тоже невероятно просто. Отношение одного катета к другому будет тангенсом противоположного угла и котангенсом близлежащего. (рис. 79.1) tan⁡α=a/b cot⁡α=a/b

С другой стороны, зная один из углов, можно найти второй, отняв его из 90 градусов. α=90°-β

Высота у прямоугольного треугольника всего одна, и она относится к любому из катетов как косинус прилежащего к нему угла. (рис. 79.2) cos⁡α=h/b h=b cos⁡α cos⁡β=h/a h=a cos⁡β

Формула медианы в прямоугольном треугольнике преобразуется в отношение гипотенузы к двум или радикала из суммы квадратов катетов к двум, если даны только катеты. (рис. 79.3) m_c=√(2a^2+2b^2-c^2 )/2=√(2c^2-c^2 )/2=√(c^2 )/2=c/2=√(a^2+b^2 )/2 m_b=√(2a^2+2c^2-b^2 )/2=√(2a^2+2a^2+2b^2-b^2 )/2=√(4a^2+b^2 )/2 m_a=√(2c^2+2b^2-a^2 )/2=√(2a^2+2b^2+2b^2-a^2 )/2=√(4b^2+a^2 )/2

Биссектриса, опущенная на гипотенузу, вычисляется аналогично произвольному треугольнику, с подстановкой радикала вместо гипотенузы. (рис.79.4) l_c=√(ab(a+b+c)(a+b-c))/(a+b)=√(ab((a+b)^2-с^2))/(a+b)=√(ab(a^2+2ab+b^2-a^2-b^2))/(a+b)=√(ab*2ab)/(a+b)=(ab√2)/(a+b) l_a=√(bc(a+b+c)(b+c-a) )/(b+c)=√(bc((b-c)^2-a^2 ) )/(b+c)=√(bc(b^2+2bc+c^2-a^2 ) )/(b+c)=√(bc(b^2+2bc+b^2 ) )/(b+c)=√(bc(2b^2+2bc) )/(b+c)=(b√(2c(b+c) ))/(b+c) l_b=√(ac(a+b+c)(a+c-b) )/(a+c)=(a√(2c(a+c) ))/(a+c)

Средние линии прямоугольного треугольника образуют внутри него еще один прямоугольный треугольник. Внутренний треугольник будет подобен внешнему, так как средние линии параллельны катетам и гипотенузе, и равны соответственно их половинам. Поскольку гипотенуза неизвестна, для нахождения средней линии M_c нужно подставить радикал из теоремы Пифагора. (рис.79.7) M_a=a/2 M_b=b/2 M_c=c/2=√(a^2+b^2 )/2

Радиус вписанной окружности в прямоугольном треугольнике вычисляется по упрощенной формуле для произвольного треугольника, а радиус описанной окружности является половиной гипотенузы и совпадает с медианой. (рис. 79.5, 79.6) r=(a+b-c)/2=(a+b-√(a^2+b^2 ))/2 R=m=c/2=√(a^2+b^2 )/2

Применение теоремы

Благодаря своей универсальности, теорема Пифагора находит себе применение в разных областях математики и других наук. К числу преимуществ ее применения относится прозрачность производимых вычислений.

Расстояние между точками

Одно из главных применений – это определение расстояния между двумя точками в прямоугольной системе координат:

\(\ s=\sqrt{(a-с)^{2} + (b-d)^{2}}\), где:

  • s – необходимое расстояние;
  • (a; b) и (с; d) – координаты двух точек.

Евклидова метрика

В этом случае с помощью теоремы Пифагора находится расстояние в многомерном пространстве:

\(d(p,\;q)=\sqrt{\sum_{i=1}^n{(p_i-q_i)}^2}\), где:

  • n – число измерений данного пространства;
  • d (p, q) – необходимое расстояние;
  • p(p1,….,pn) и q(q1,….,qn) – две точки, расстояние между которыми нужно найти.

Теория чисел

Арифметическим аналогом теоремы Пифагора стали пифагоровы тройки чисел.

Определение

Пифагоровы тройки – группа из трех натуральных чисел x, y и z, удовлетворяющих равенству x2+y2=z2.

Например, к таким числам можно отнести группы (3, 4, 5), (6, 8, 10), (5, 12, 13) и другие. Пифагоровы тройки широко применяются в разных областях деятельности, например, в программировании и криптографии.

Как найти один катет, если известна гипотенуза и другой катет

  • гипотенуза (обозначим ее буквой «c») равна х см: c=x;
  • катет (обозначим его буквой «b») равен y см: b=y;

размер другого катета (обозначим его буквой «a»);

В этом варианте решением задачи, как и в первом, является использование теоремы Пифагора.

  1. Подставляем наши условные обозначения в теорему: c^2=a^2+b^2,
  2. Выносим необходимый катет: a^2=c^2-b^2
  3. Подносим обе части уравнения к квадратному кореню: a=√(c^2-b^2)
  4. Подставляем данные значения и имеем решение: a=√(x^2-y^2)

В жизни нам часто придется сталкиваться с математическими задачами: в школе, в университете, а затем помогая своему ребенку с выполнением домашнего задания. Люди определенных профессий будут сталкиваться с математикой ежедневно. Поэтому полезно запоминать или вспоминать математические правила. В этой статье мы разберем одно из них: нахождение катета прямоугольного треугольника.

Свойства треугольника с прямым углом

Высота, которую опустили из прямого угла, разбивает фигуру на две равные части.

Стороны прямоугольного треугольника и его медианы легко узнать по правилу: медиана, которая опущена на гипотенузу, равна ее половине. можно найти как по формуле Герона, так и по утверждению, что она равна половине произведению катетов.

В прямоугольном треугольнике действуют свойства углов в 30 о, 45 о и 60 о.

  • При угле, который равен 30 о, следует помнить, что противолежащий катет будет равен 1/2 самой большой стороны.
  • Если угол 45 о, значит, второй острый угол также 45 о. Это говорит о том, что треугольник равнобедренный, и его катеты одинаковы.
  • Свойство угла в 60 о заключается в том, что третий угол имеет градусную меру в 30 о.

Площадь легко узнать по одной из трех формул:

  1. через высоту и сторону, на которую она опускается;
  2. по формуле Герона;
  3. по сторонам и углу между ними.

Стороны прямоугольного треугольника, а точнее катеты, сходятся с двумя высотами. Для того чтобы найти третью, необходимо рассматривать образовавшийся треугольник, и тогда по теореме Пифагора вычислить необходимую длину. Помимо этой формулы существует также соотношение удвоенной площади и длины гипотенузы. Наиболее распространенным выражением среди учеников является первое, так как требует меньше расчетов.

Способ под номером 3: даны катет и угол, который лежит напротив него

Чтобы не запутаться в формулах, введем обозначение для этого угла — β, а сторону оставим прежнюю «а». В этом случае потребуется другая тригонометрическая функция — синус.

Как и в предыдущем примере, синус равен отношению катета к гипотенузе. Формула этого способа выглядит так:

с = а / sin β.

Для того чтобы не запутаться в тригонометрических функциях, можно запомнить простое мнемоническое привило: если в задаче идет речь о противолежащем угле, то нужно использовать синус, если — о прилежащем, то косинус

Следует обратить внимание на первые гласные в ключевых словах. Они образуют пары о-и или и-о

Способ под номером 4: по радиусу описанной окружности

Теперь, для того чтобы узнать, как найти гипотенузу, потребуется вспомнить свойство окружности, которая описана около прямоугольного треугольника. Оно гласит следующее. Центр окружности совпадает с серединой гипотенузы. Если сказать по-другому, то самая большая сторона прямоугольного треугольника равна диагонали окружности. То есть удвоенному радиусу. Формула для этой задачи будет выглядеть так:

с = 2 * r, где буквой r обозначен известный радиус.

Это все возможные способы того, как находить гипотенузу прямоугольного треугольника. Пользоваться в каждой конкретной задаче нужно тем методом, который больше подходит по набору данных.