Прямоугольный треугольник. теорема пифагора

Прямоугольная фигура

С незапамятных времен человечество интересовалось свойствами геометрических объектов. Одним из них был прямоугольный треугольник, который еще в Древнем Египте считался священным, поскольку обладал характерными для него особенностями (речь идет о фигуре, соотношение сторон которой находится в отношении 3:4:5). Большие достижения в области изучения геометрических свойств рассматриваемой фигуры имели философы античной Греции, среди которых выделяется имя Пифагора.

Составляющие элементы и теорема Пифагора

Поскольку речь идет о треугольнике, то для него также характерно наличие трех сторон и трех внутренних углов. Однако, в отличие от остальных фигур данного вида, прямоугольный треугольник имеет один угол равный 90 °. Остальные два угла всегда являются острыми, что следует из фиксированной суммы их значений (180 °).

Чтобы узнать, как называются стороны прямоугольного треугольника, следует рассмотреть его рисунок.

Стороны a и b образуют прямой угол. Они называются катетами. Сторона c, которая лежит против угла 90 °, ограничена двумя острыми углами. Она носит название гипотенузы. Эти названия стоит запомнить, поскольку на них основаны все свойства и теоремы для этого типа треугольника.

Существует два вида рассматриваемой фигуры:

  • равнобедренный;
  • разносторонний.

Касательно равнобедренного прямоугольного геометрического объекта можно сказать, что его катеты друг другу равны, но они никогда не равны гипотенузе. Острые углы в таком треугольнике составляют по 45 °, что легко доказать, применяя теорему синусов, и учитывая, что сумма трех углов соответствует 180 °.

Теорема косинусов для рассматриваемого треугольника произвольной формы вырождается в простое равенство:

c 2 = a 2 + b 2 — 2*a*b*cosC ==>

c 2 = a 2 + b 2 .

Оно получается потому, что косинус прямого угла равен нулю согласно свойству этой тригонометрической функции. Формулировка «квадрат гипотенузы в точности соответствует сумме квадратов катетов данного треугольника» носит название известной теоремы Пифагора. Чтобы ее доказать, не прибегая к теореме косинусов, следует провести некоторые геометрические построения.

Основные свойства

Несмотря на общие свойства, которыми обладает прямоугольный треугольник, и которые характерны для любой фигуры с тремя вершинами и тремя сторонами, для него существуют также присущие только ему особенности. Основными из них являются следующие:

  1. Наличие двух острых углов, что видно из рисунка треугольника прямоугольного.
  2. Длина гипотенузы всегда больше длины любого из катетов, при этом сумма длин последних всегда будет больше, чем одна гипотенуза.
  3. Справедливость теоремы Пифагора.
  4. Если один из острых углов равен 30 °, то противолежащий к нему катет ровно в два раза меньше длины гипотенузы.
  5. Сумма длины гипотенузы и диаметра окружности, вписанной в треугольник, равна сумме длин катетов. Математически получается следующая запись: c + 2*r = a + b, здесь r — радиус вписанной в треугольник окружности. Получить это выражение можно легко, если применить теорему о вписанной в произвольный треугольник окружности, которая устанавливает связь между r, p и S: S = p*r, где S — площадь фигуры, p — ее полупериметр.
  6. Чтобы понять, как найти основание прямоугольного треугольника, следует рассмотреть его катеты. Поскольку они перпендикулярны друг другу, то один из них может служить высотой, а другой основанием. Тогда площадь вычислится, как полупроизведение этих сторон: S = ½*a*b.
  7. Медиана M делит прямой угол равнобедренного треугольника на две равные части, то есть является биссектрисой. Одновременно она является высотой, длина которой равна половине гипотенузы: M = ½*c. Это свойство справедливо для любого треугольника с прямым углом, а не только для равнобедренного.
  8. Длину высоты h, которая проведена из вершины с прямым углом на основание-гипотенузу, можно найти по следующей формуле через катеты: h = a*b/(a2 + b2)^0,5. Это равенство следует из формулы для площади фигуры.

Кроме названных свойств, следует отметить, что рассматриваемый геометрический объект является источником определения тригонометрических выражений (синуса, косинуса, котангенса и тангенса). Так, синусом угла ∠ A будет отношения противолежащего ему катета a к гипотенузе c, то есть sinA = a/c. Косинусом этого угла будет отношения ближайшего или прилежащего к нему катета к стороне c: cosA = b/c. Составлены целые таблицы этих функций, которые активно используются при решении геометрических проблем.

Игры с линейкой и карандашом

Простая задача: как найти синус угла, нарисованного на бумаге? Для решения понадобится обычная линейка, треугольник (или циркуль) и карандаш. Простейшим способом вычислить синус угла можно, разделив дальний катет треугольника с прямым углом на длинную сторону — гипотенузу. Таким образом, сначала нужно дополнить острый угол до фигуры прямоугольного треугольника, прочертив перпендикулярную одному из лучей линию на произвольном расстоянии от вершины угла. Потребуется соблюсти угол именно 90°, для чего нам и понадобится канцелярский треугольник.

Использование циркуля немного точнее, но займёт больше времени. На одном из лучей нужно отметить 2 точки на некотором расстоянии, настроить на циркуле радиус, примерно равный расстоянию между точками, и прочертить полуокружности с центрами в этих точках до получения пересечений этих линий. Соединив точки пересечения наших окружностей между собой, мы получим строгий перпендикуляр к лучу нашего угла, остаётся лишь продлить линию до пересечения с другим лучом.

В полученном треугольнике нужно линейкой измерить сторону напротив угла и длинную сторону на одном из лучей. Отношение первого измерения ко второму и будет искомой величиной синуса острого угла.

Пример задачи №2

Условие: вычислить диагональ, проведенную в прямоугольнике с меньшей стороной, равной 41. Если известно, что она делит угол на такие, которые соотносятся как 2 к 1.

Решение.

В этой задаче диагональ прямоугольника является наибольшей стороной в треугольнике с углом 90º. Поэтому все сводится к тому, как найти гипотенузу.

В задаче идет речь об углах. Это значит, что нужно будет пользоваться одной из формул, в которых присутствуют тригонометрические функции. А сначала требуется определить величину одного из острых углов.

Пусть меньший из углов, о которых идет речь в условии, будет обозначен α. Тогда прямой угол, который делится диагональю, будет равен 3α. Математическая запись этого выглядит так:

90º = 3 α.

Из этого уравнения просто определить α. Он будет равен 30º. Причем он будет лежать напротив меньшей стороны прямоугольника. Поэтому потребуется формула, описанная в способе №3.

Гипотенуза равна отношению катета к синусу противолежащего угла, то есть:

41 / sin 30º = 41 / (0,5) = 82.

Ответ: гипотенуза равна 82.

Прямоугольный треугольник – коротко о главном

  • \( \displaystyle a,\text{ }b\) – катеты
  • \( \displaystyle c\) – гипотенуза
  • В прямоугольном треугольнике гипотенуза всегда больше любого из катетов.

Теорема Пифагора

Признаки равенства прямоугольных треугольников:

  • по двум катетам: \( \displaystyle a={{a}_{1}},\ b={{b}_{1}}\)
  • по катету и гипотенузе: \( \displaystyle a={{a}_{1}},\ c={{c}_{1}}\) или \( \displaystyle b={{b}_{1}},\ c={{c}_{1}}\)
  • по катету и прилежащему острому углу: \( \displaystyle a={{a}_{1}},\) \( \displaystyle \angle \beta =\angle {{\beta }_{1}}\) или \( \displaystyle b={{b}_{1}},\) \( \displaystyle \angle \alpha =\ \angle {{\alpha }_{1}}\)
  • по катету и противолежащему острому углу: \( \displaystyle a={{a}_{1}},\) \( \displaystyle \angle \alpha =\ \angle {{\alpha }_{1}}\) или \( \displaystyle b={{b}_{1}},\) \( \displaystyle \angle \beta =\angle {{\beta }_{1}}\)
  • по гипотенузе и остром углу: \( \displaystyle c={{c}_{1}},\) \( \displaystyle \angle \alpha =\ \angle {{\alpha }_{1}}\) или \( \displaystyle c={{c}_{1}},\) \( \displaystyle \angle \beta =\angle {{\beta }_{1}}\).

Признаки подобия прямоугольных треугольников:

  • одному острому углу: \( \displaystyle \ \alpha =\ {{\alpha }_{1}}\) или \( \displaystyle \angle \beta =\angle {{\beta }_{1}}\)
  • из пропорциональности двух катетов: \( \displaystyle \frac{a}{{{a}_{1}}}=\frac{b}{{{b}_{1}}}\)
  • из пропорциональности катета и гипотенузы: \( \displaystyle \frac{a}{{{a}_{1}}}=\frac{c}{{{c}_{1}}}\) или \( \displaystyle \frac{b}{{{b}_{1}}}=\frac{c}{{{c}_{1}}}\).

Синус, косинус, тангенс, котангенс в прямоугольном треугольнике:

  • Синусом острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе: \( \displaystyle \sin \ \alpha =\frac{a}{c},\ \ \sin \ \beta =\frac{b}{c}\)
  • Косинусом острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе: \( \displaystyle \cos \ \alpha =\frac{b}{c},\ \ \cos \ \beta =\frac{a}{c}\)
  • Тангенсом острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему: \( \displaystyle tg\alpha =\frac{a}{b},\ \ tg\beta =\frac{b}{a}\)
  • Котангенсом острого угла прямоугольного треугольника называется отношение прилежащего катета к противолежащему: \( \displaystyle ctg\alpha =\frac{b}{a},\ \ ctg\beta =\frac{a}{b}\).

Высота прямоугольного треугольника

  • Высота, проведенная из вершины прямого угла, разбивает прямоугольный треугольник на два подобных треугольника.
  • Каждый из этих треугольников подобен исходному: \( \displaystyle \Delta BEC\sim \Delta AEC\sim \Delta ABC\)
  • Высота прямоугольного треугольника: \( \displaystyle h=\frac{ab}{c}\) или \( \displaystyle h=\sqrt{BE\cdot EA}\).

Медиана и описанная окружность

  • В прямоугольном треугольнике медиана, проведённая из вершины прямого угла, равна половине гипотенузы: \( \displaystyle m=\frac{c}{2}\).
  • Центр описанной окружности совпадает с серединой гипотенузы (точка О).
  • Радиус описанной окружности: \( \displaystyle R=\frac{c}{2}={{m}_{c}}\).

Вписанная окружность

Радиус вписанной в прямоугольный треугольник окружности:

Площадь прямоугольного треугольника:

Вычисление синуса по другим тригонометрическим функциям

Также вычисление синуса возможно, если известны значения других тригонометрических функций угла или хотя бы длины сторон треугольника. В этом нам помогут тригонометрические тождества. Разберём распространённые примеры.

Как находить синус при известном косинусе угла? Первое тригонометрическое тождество, исходящее из теоремы Пифагора, гласит, что сумма квадратов синуса и косинуса одного и того же угла равна единице.

Как находить синус при известном тангенсе угла? Тангенс получают делением дальнего катета на ближний или делением синуса на косинус. Таким образом, синусом будет произведение косинуса на тангенс, а квадратом синуса будет квадрат этого произведения. Заменяем косинус в квадрате на разность между единицей и квадратным синусом согласно первому тригонометрическому тождеству и путём нехитрых манипуляций приводим уравнение к вычислению квадратного синуса через тангенс, соответственно, для вычисления синуса придётся извлечь корень из полученного результата.

Как находить синус при известном котангенсе угла? Значение котангенса можно вычислить, разделив длину ближнего от угла катета на длину дальнего, а также поделив косинус на синус, то есть котангенс — функция, обратная тангенсу относительно числа 1. Для расчёта синуса можно вычислить тангенс по формуле tg α = 1 / ctg α и воспользоваться формулой во втором варианте. Также можно вывести прямую формулу по аналогии с тангенсом, которая будет выглядеть следующим образом.

Свойства прямоугольного треугольника:

1. В прямоугольном треугольнике сумма двух острых углов равна 90°.

2. В прямоугольном треугольнике катет, лежащий против угла в 30° , равен половине гипотенузы.

И наоборот, если в прямоугольном треугольнике катет вдвое меньше гипотенузы, то напротив него лежит угол в 30˚.

Рис. 7. Прямоугольный треугольник с острым углом 30˚

b = c / 2

3. Теорема Пифагора:

Сумма квадратов катетов равна квадрату гипотенузы.

c​2​​ = a​2​​ + b​2​​ ,

где a, b – катеты, c – гипотенуза.

Рис. 8. Прямоугольный треугольник

4. В прямоугольном треугольнике центр описанной окружности – есть середина гипотенузы.

И соответственно радиус описанной окружности (R) равен половине гипотенузы.

 ,

где c – гипотенуза.

                         Рис. 9. Прямоугольный треугольник и описанная окружность         

5. В прямоугольном треугольнике медиана, падающая на гипотенузу, равна половине гипотенузы.

 Рис. 10. Прямоугольный треугольник и медиана, падающая на гипотенузу

АМ – медиана прямоугольного треугольника, падающая на гипотенузу, АМ = ВМ = МС, АМ = ВС/2

6. В прямоугольном треугольнике высота, проведенная из вершины прямого угла, разбивает его на два треугольника подобные исходному.

 Рис. 11. Прямоугольный треугольник и высота, проведенная из вершины прямого угла

АВ/ВС = АН/АС = ВН/АВ

Задачи и решения

Задача 1. Один из углов прямоугольного треугольника равен 60°, а сумма гипотенузы и меньшего из катетов равна 26.4см. Найдите гипотенузу треугольника.

Решение. Обозначим через b− меньший катет, а через c− гипотенузу. Из условия задачи имеем: c+b=26.4см.

Так как один из острых углов прямоугольного треугольника равен 60°, то другой острый угол равен 90°−60°=30°. Как известно, против угла 60° лежит большая сторона (катет), а против угла 30° − меньшая. Из свойства 2 следует, что меньшая сторона равна половине гипотенузы : . Тогда имеем: или . Следовательно c=17.6 см.

Ответ: 17.6 см.

Задача 2. В треугольниках ABC и A1B1C1, углы A и A1 прямые, BD и B1D1 −биссектрисы. Докажите, что , если и BD=B1D1.

Доказательство. Так как BD и B1D1 −биссектрисы и , то (Рис.8). Из и следует, что (Теорема 1).

Тогда и, следовательно, . Отсюда получим, что треугольники BDC и B1D1C1 равны (второй признак равенства треугольников:, , ). Следовательно (так как , ).

Типовые примеры

Для решения задач на нахождение катета не нужно обладать какими-то особенными знаниями. Нужно просто внимательно проанализировать условие. Например, пусть известно, что в прямоугольнике один катет длиннее другого на пять сантиметров. При этом площадь фигуры равняется 84 сантиметрам в квадрате. Необходимо определить длины сторон и периметр.

Так как в условии дана площадь, то при решении необходимо отталкиваться от неё. Известно, что площадь прямоугольного треугольника находится по формуле: S = AC*CB/2. Это выражение является частным случаем общей формулы для нахождения площади любого треугольника, где: AC — это высота, а CB — основание. Если принять, что AC равно X, то, согласно условию, длина CB будет составлять x+5.

Исходя из этого, площадь треугольника будет равна: S = (x*(x+5))/2. Подставив вместо S заданное значение, можно получить квадратное уравнение: x2 + 5x — 84 = 0. Решать его лучше методом детерминанта. Корнями уравнения будут -12 и 7. Так как -12 не удовлетворяет условию задачи, то верным ответом будет семь.

Длина второго катета равняется семи сантиметрам. Первого: AC = 7−5 = 2 см. Зная оба катета, по теореме Пифагора можно найти гипотенузу: c = (22 + 72)½ = (4+49)½ = 531/2 = 7,3 см. Найдя длины всех сторон, можно без усилий найти периметр обыкновенным сложением: P = 2+7+7,3 = 16,3 см. Задача решена.

Довольно интересные, но в то же время простые задачи на нахождение сторон и углов при известной длине гипотенузы и значения разворота одной из вершин. Пусть имеется прямоугольный треугольник, у которого гипотенуза BC равняется пяти сантиметрам, а угол между ней и катетом составляет 60 градусов. Нужно определить все остальные стороны и углы.

Так как известна гипотенуза и острый угол, то, воспользовавшись тригонометрическими формулами, можно найти длины катетов: AC=BC*sin60 = 5*(3)½/2; AB=BC*cos60 = 5/2. Сумма всех углов в треугольнике равна 180 градусов, так как один из них прямой, а второй задан и составляет 60 градусов, то третий находится путём вычитания C = 180 — (90 + 60) = 30.

Пример задачи №1

Условие: в прямоугольном треугольнике проведены медианы к обоим катетам. Длина той, которая проведена к большей стороне, равна √52. Другая медиана имеет длину √73. Требуется вычислить гипотенузу.

Решение.

Так как в треугольнике проведены медианы, то они делят катеты на два равных отрезка. Для удобства рассуждений и поиска того, как найти гипотенузу, нужно ввести несколько обозначений. Пусть обе половинки большего катета будут обозначены буквой «х», а другого — «у».

Теперь нужно рассмотреть два прямоугольных треугольника, гипотенузами у которых являются известные медианы. Для них нужно дважды записать формулу теоремы Пифагора:

(2у)2 + х2 = (√52)2

и

(у)2 + (2х)2 = (√73)2.

Эти два уравнения образуют систему с двумя неизвестными. Решив их, легко можно будет найти катеты исходного треугольника и по ним его гипотенузу.

Сначала нужно все возвести во вторую степень. Получается:

4у2 + х2 = 52

и

у2 + 4х2 = 73.

Из второго уравнения видно, что у2 = 73 — 4х2. Это выражение нужно подставить в первое и вычислить «х»:

4(73 — 4х2) + х2 = 52.

После преобразования:

292 — 16 х2 + х2 = 52 или 15х2 = 240.

Из последнего выражения х = √16 = 4.

Теперь можно вычислить «у»:

у2 = 73 — 4(4)2 = 73 — 64 = 9.

у = 3.

По данным условия получается, что катеты исходного треугольника равны 6 и 8. Значит, можно воспользоваться формулой из первого способа и найти гипотенузу:

√(62 + 82) = √(36 + 64) = √100 = 10.

Ответ: гипотенуза равна 10.

Значение

Через соотношение сторон треугольника выражают некоторые свойства этой геометрической фигуры:

  • Напротив наименьшей стороны треугольника находится его наименьший угол.
  • Внешний угол рассматриваемой геометрической фигуры получают, продлевая одну из сторон.
  • Напротив равных углов треугольника лежат равные стороны.
  • В любом треугольнике одна из сторон всегда больше разности двух других отрезков. А сумма любых двух сторон этой фигуры больше третьей.

Один из признаков равенства двух треугольников является соотношение суммы всех сторон геометрической фигуры. Если эти значения одинаковые, то и треугольники будут равными.

Некоторые свойства треугольника зависят от его типа. Поэтому вначале следует учитывать величину сторон или углов этой фигуры.

Понятия и определения

Знак треугольника в первом веке ввёл в обиход древнегреческий философ и учёный Герон. Его свойства изучали Платон и Евклид. По их мнению, вся поверхность прямолинейного вида состоит из множеств различных треугольников. В геометрии под ними понимается область, лежащая в плоскости, ограниченной тремя отрезками, соединяющимися в трёх точках, не принадлежащих одной прямой.

Линии, образующие область, называются сторонами, а точки соприкосновения отрезков — вершинами. Основными элементами многоугольника являются:

  1. Медиана — отрезок, соединяющий середину с противолежащим углом. В треугольнике три медианы, которые пересекаются в одной точке. Называется она центроидом и определяет центр тяжести объекта.
  2. Высота — линия, опущенная из вершины на противоположную сторону, образующую с ней прямой угол. Место пересечения высот называют ортоцентром.
  3. Биссектриса — прямая, проведённая из угла таким образом, что делит его на две равные части. Если в треугольник вписать окружность, соприкасающуюся с его сторонами, то её центр совпадёт с точкой пересечения биссектрис. Называют это место — инцентр.

Различают треугольники и по числу равных сторон. Так, если они все равны, фигура называется равносторонней. Когда же по величине совпадают только две стороны, то многоугольник является равнобедренным. Его главное свойство в том, что углы равны. Частным случаем равнобедренного многоугольника является правильный треугольник (разносторонний).

Чтобы не возникала путаница, существуют стандартные обозначения величин. Вершины подписываются заглавными буквами A, B, C, а углы — греческими символами: α, β, γ. Стороны же обозначают прописными буквами латинского алфавита: a, b, c.

Теорема Пифагора и углы

Эта теорема занимает одно из центральных мест в математике. Алгебраическая формулировка её гласит, что в прямоугольнике квадрат длины гипотенузы по своему значению равен сумме квадратов двух прилегающих к ней сторон, то есть катетов. Например, если обозначить гипотенузу буквой c, а катеты а и b, то математически её можно записать в виде формулы: a2+b2 = c2.

Существует несколько доказательств этой теоремы. Самое простое из них — это использование подобия треугольников. В его основе лежат аксиомы. Пусть имеется геометрическая фигура ABC, у которой вершина C является прямой, то есть её угол равен 90 градусов. Если из точки С опустить высоту, а место пересечения с противолежащей стороной обозначить H, то получится два треугольника. Один будет состоять из вершин AHC, а другой BHC. Эти новые фигуры подобны ABC по двум углам. Следующие выражения будут верными:

  • BC/AB = HB/BC;
  • AC/AB = AH/AC.

Приведённые записи эквивалентны равенствам: BC2 = AB * HB; AC2 = AB * AH. Сложив первую и вторую формулу, получается: BC2 + AC2 = AB * (HB + AH) = AB2. Что и следовало доказать.

Используя это фундаментальное правило и свойство, что катет, расположенный напротив угла в 30 градусов, равен половине гипотенузы, проводят множество расчётов, связанных с вычислением длин сторон. Для доказательства, что AC = BC/2, приводят следующие рассуждения.

Так как вершина B равна 30 градусам, то, согласно правилу, разворот С должен составлять C =30*2 = 60 градусов. К имеющемуся треугольнику можно приложить точно такую же фигуру, делая сторону AB центром симметрии. Тогда для многоугольника BCD будет справедливо, что B = D = 60º. Исходя из этого можно утверждать, что DC = BC. Но, так как AC = ½ DC, то соответственно AC = ½ BC.

Способы нахождения длины стороны

Рассматриваемая фигура обладает достаточно большим количеством геометрических свойств, которые имеют математическое выражение в виде формул. Также для нее применимы особенности тригонометрических функций и общие формулы для треугольников общего типа. Весь этот набор равенств можно использовать для нахождения любой неизвестной стороны прямоугольной фигуры. Чаще всего встречаются задачи следующего типа:

  1. Известны две любые стороны. Независимо от того, неизвестен один из катетов или гипотенуза, найти эту сторону легко с использованием теоремы Пифагора. Пример для катета a выглядит так: a = (c 2 — b 2 )^0,5.
  2. По известному острому углу и произвольной стороне. В этом случае любую из двух оставшихся неизвестных сторон треугольника легко вычислить с помощью соответствующей тригонометрической функции. Например, известен угол ∠ B и катет a, тогда: b = a*tgB, с = a/cosB.
  3. По катету и высоте, проведенной из прямого угла. Для решения этой задачи сначала необходимо найти острый угол исходного треугольника, который определяется с помощью тригонометрической функции синуса. Как только он станет известен, задача сводится к типу 2.
  4. По периметру и стороне. Эта задача имеет более сложный характер, чем описанные ранее. Решается она с помощью той же теорема Пифагора, но с применением теории квадратных уравнений.
  5. Наконец, самый сложный вариант задачи на нахождение произвольного катета по известным площади фигуры и высоте, которая опущена из прямого угла. Здесь также необходимо использовать теорию решения квадратных уравнений, но в дополнение к этому следует использовать замену переменных.

Пусть площадь треугольника составляет 60 см 2 , а опущенная высота из острого угла равна 8 см. Необходимо посчитать, какие длины имеют катеты и гипотенуза.

Если внимательно прочитать условие задачи, то можно увидеть, что сама высота является одним из катетов, поскольку опущена она на основание не из прямого, а из острого угла. Пусть катет a = 8 см. Сторона b вычисляется по формуле для площади:

S = ½*a*b ==>

b = 2*S/a = 2*60/8 = 15 см.

Определить гипотенузу легко по формуле Пифагора:

c = (a 2 + b2)^0,5 = (82 + 152)^0,5 = 17 см.

Как находить синус по трём сторонам треугольника

Существует формула для нахождения длины неизвестной стороны любого треугольника, не только прямоугольного, по двум известным сторонам с использованием тригонометрической функции косинуса противолежащего угла. Выглядит она так.

Если в задаче даны длины двух сторон треугольника и угол между ними, то можно применить формулу площади треугольника через синус.

Пример расчета площади треугольника через синус. Даны стороны a = 3, b = 4, и угол γ= 30°. По синус угла в 30° равен 0.5
Площадь треугольника будет равна 3 кв. см.

Площадь будет равна половине квадрата стороны, умноженной на дробь. В ее числителе находится произведение синусов прилегающих углов, а в знаменателе синус противолежащего угла. Теперь рассчитываем площадь по следующим формулам:

Например, дан треугольник со стороной a=3 и углами γ=60°, β=60°. Вычисляем третий угол:
Подставляем данные в формулу
Получаем, что площадь треугольника равняется 3,87 кв. см.

Свойства средней линии треугольника

Признак средней линии треугольника: если отрезок в треугольнике проходит через середину одной из его сторон, пересекает вторую и параллелен третьей — этот отрезок можно назвать средней линией этого треугольника.

Свойства:

  1. Средняя линия равна половине длины основания и параллельна ему.
  2. Средняя линия отсекает треугольник, подобный данному с коэффициентом 1/2; его площадь равна четверти площади данного.
  3. Три средние линии разделяют исходную фигуру на четыре равных треугольника. Центральный из них называют дополнительным.
  4. Три средние линии разделяют исходный прямоугольный треугольник на четыре равных прямоугольных треугольника.

Теорема о средней линии треугольника

Теорема о средней линии треугольника звучит так:

Средняя линия треугольника параллельна основанию и равна его половине. А так выглядит формула нахождения средней линии треугольника:

Докажем теорему:

  1. По условию нам дано, что MA = MB, NA = NC

  2. Рассмотрим два образовавшихся треугольника ΔAMN и ΔABC.

    (по второму признаку подобия треугольников).

  3. Так как △AMN ~ △ABC, то Следовательно, ВС = 2МN. Значит, доказано, что средняя линия равна половине основания.

  4. Так как △AMN ~ △ABC, то ∠1 = ∠2 . Так как ∠1 и ∠2 — соответственные углы, то по признаку параллельности прямых MN || BC.

    Параллельность средней линии и соответствующего ей основания доказана.

Теорема доказана.

Пример 1. В треугольнике ΔABC AB = 8, BC = 7, CA = 5, точки M, K, N — середины сторон AB, BC, CA соответственно. Найти периметр ΔMNK.

Соединим середины сторон треугольника ΔABC и получим его средние линии, которые образуют треугольник ΔMNK. Найдем их длины по теореме о средней линии:

Ответ: периметр треугольника ΔMNK равен 10.

Пример 2. В прямоугольном треугольнике АВС есть две средние линии: MN и NP, равные 3 и 4 соответственно. Найти площадь большого прямоугольного треугольника.

Решение:

  1. Площадь треугольника равна половине произведения основания на высоту. Так как треугольник прямоугольный, то его площадь найдем как половину произведения катетов:

    S = ½ × AC × BC

  2. Так как MN — средняя линия, то по теореме о средней линии она равна половине катета AC:

    MN = ½ × AC

    Значит, AC = 2MN = 2 × 3 = 6.

  3. Так как NP — средняя линия, то по теореме о средней линии она равна половине катета BC:

    NP = ½ × BC

    Значит, BC = 2NP = 2 × 4 = 8.

  4. Тогда найдем площадь большого треугольника, используя формулу, указанную выше:

    S = ½ × 6 × 8 = ½ × 48 = 24.

Ответ: площадь большого прямоугольного треугольника равна 24.

Понятие треугольника

Треугольник — это геометрическая фигура, которая получилась из трех отрезков. Их соединили тремя точками, которые не лежат на одной прямой. Отрезки принято называть сторонами, а точки — вершинами.

Виды треугольников:

  • Прямоугольный. Один угол прямой, то есть равен 90 градусам, два других меньше 90 градусов.
  • Остроугольный. Градусная мера всех углов больше 0, но меньше 90 градусов.
  • Тупоугольный. Один угол тупой, два других — острые.

Треугольник считают равнобедренным, если две его стороны равны. Эти стороны называют боковыми сторонами, а третью — основанием.

Треугольник, у которого все стороны равны, называется равносторонним или правильным.

Треугольник называется прямоугольным, если у него есть прямой угол, то есть угол в 90°. Сторона прямоугольного треугольника, которая лежит напротив прямого угла — гипотенуза, а две другие стороны — катеты.

Правильный (равносторонний или равноугольный) треугольник — это правильный многоугольник, в котором все стороны равны между собой, все углы также равны и составляют 60°. В равностороннем треугольнике высота является и биссектрисой, и медианой.

Свойства треугольников:

  • В треугольнике против большего угла лежит большая сторона — и наоборот.
  • Сумма углов треугольника равна 180 градусов.
  • Все углы равностороннего треугольника равны 60 градусам.
  • В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов.